Question 1: The figure below is a plot of Fahrenheit temperature versus Celsius temperature.
(a) Is the value of the y-intercept found by setting (Helpful Hint: The y-intercept is found by setting your x-value to 0. Look at the graph and determine what your x and y-axis represent.)
1. TF = TC
2. TC = 0 or
3. TF = 0?
(b) Compute the value of the y-intercept. (Helpful Hint: Slope is equal to Δy/Δx. Choose 2 points on the line (try the initial and terminal points since they are labled). Identify the x and y coordinates of each point and solve for the slope.)
(c) What would be the slope and y-intercept if the graph were plotted the opposite way (Celsius versus Fahrenheit)? . (Helpful Hint: Take the reciprocal of the value for the slope in part b)
Question 2
:If 2.4 m3 of a gas initially at STP is compressed to 1.6 m3 and its temperature raised to 30oC, what is the final pressure? (Helpful Hint: P(f) = P(i)V(i)T(f)/T(i) (where i=initial and f=final).)
(see attached file for diagram)
Question 3:
A driver releases an air bubble of volume 2.0 cm3 from a depth of 15 m below the surface of a lake, where the temperature is 7.0oC. What is the volume of the bubble when it reaches just below the surface of the lake, where the temperature is 20oC? (Helpful Hint: Find the pressure (P) at a depth of 15 m by (P = ρgh). Next, find the pressure at 0.078 m below the surface. Finally, use the equation V(f) = P(i)V(i)T(f)/[T(i)P(f)])
Question 4:
A steel beam 10m long is installed in a structure at 20oC. What are the beam's changes in length at the temperature extremes of -30oC to 45oC? (Helpful Hint: ΔL =LoαΔT for both cases.)
Question 5:
A circular steel plate of radius 0.10 m is cooled from 350oC to 20oC. By what percentage does the plate's area decrease? (Helpful Hint: Use the equation ΔA/Ao = (2α)ΔT (remember that Ao = πr^2). Multiply the result by 100 to get the percentage.)
Question 6:
Will heat always flow from an object having more energy to one having less energy? Justify your answer as completely as possible, demonstrating understanding of both 'heat' and 'energy'