Discussion Post: Data Mining
• For sparse data, discuss why considering only the presence of non-zero values might give a more accurate view of the objects than considering the actual magnitudes of values. When would such an approach not be desirable?
• Describe the change in the time complexity of K-means as the number of clusters to be found increases.
• Discuss the advantages and disadvantages of treating clustering as an optimization problem. Among other factors, consider efficiency, non-determinism, and whether an optimization-based approach captures all types of clusterings that are of interest.
• What is the time and space complexity of fuzzy c-means? Of SOM? How do these complexities compare to those of K-means?
• Explain the difference between likelihood and probability.
• Give an example of a set of clusters in which merging based on the closeness of clusters leads to a more natural set of clusters than merging based on the strength of connection (interconnectedness) of clusters.
The response should include a reference list. One-inch margins, Using Times New Roman 12 pnt font, double-space and APA style of writing and citations.