Complete the mcq:
Q1 In the backtracking algorithm, if it is determined that a partial solution would end in a dead end, then the algorithm ____.
terminates
restarts
removes the most recently added part and tries other possibilities
was designed incorrectly
Q2 void decToBin(int num, int base)
{
if(num > 0)
{
decToBin(num/base, base);
cout< }
}
Given the recursive function above, what is the result of decToBin(39, 2)?
10111
10011
100111
110111
Q3 int func1(int m, int n) {
if (m==n || n==1)
return 1;
else
return func1(m-1,n-1) + n*func1(m-1,n);
}
Which of the following function calls would result in the value 1 being returned?
func1(0, 1)
func1(1, 0)
func1(2, 0)
func1(1, 2)
Q4 int func2(int m, int n) {
if (n == 0)
return 0;
else
return m + func2(m, n-1);
}
What is the output of func2(2, 3)?
2
3
5
6
Q5 int func2(int m, int n) {
if (n == 0)
return 0;
else
return m + func2(m, n-1);
}
Which of the following statements about the code above is always true?
func2(m,n) = func2(n, m) for m >= 0
func2(m,n) = m * n for n >=0
func2(m,n) = m + n for n >=0
func2(m, n) = n * m for n >=0
Q6 int func1(int m, int n) {
if (m==n || n==1)
return 1;
else
return func1(m-1,n-1) + n*func1(m-1,n);
}
How many base cases are in the function above?
0
1
2
3
Q7 int func3(int m, int n) {
if (m < n)
return 0;
else
return 1 + func3(m-n, n);
}
What is the value of func3(9, 7), based on the code above?
0
1
2
7
Q8 int rFibNum(int a,int b,int n)
{
if(n==1)
return a;
else if(n==2)
return b;
else
return rFibNum(a,b,n-1) + rFibNum(a,b,n-2);
}
What is the limiting condition of the code above?
n >= 0
a >= 1
b >= 1
n >= 1
Q9 int exampleRecursion (int n)
{
if (n==0)
return 0;
else
return exampleRecursion(n-1) + n*n*n;
}
What does the code above do?
Returns the cube of the number n
Returns the sum of the cubes of the numbers, 0 to n
Returns three times the number n
Returns the next number in a Fibonacci sequence
Q10 int exampleRecursion (int n)
{
if (n==0)
return 0;
else
return exampleRecursion(n-1) + n*n*n;
}
What is the output of exampleRecursion(3) ?
25
32
36
42