What is the opportunity cost for pareto travels


Question 1. Math Review Question:

a. You are told that there  are two linear  relationships between Y  and X  where  Y is the  variable  measured  on  the  vertical  axis  and  X  is  the  variable  measured  on  the horizontal axis. The first linear relationship is given by the equation Y = 50 – 2X.

You  are  told  that  the  second  linear  relationship  goes  through  the  origin  and  that for  every  1  unit increase  in  the  X  variable,  the  Y  variable  increases  by  8  units.

What is the equation for the second line and what is the solution (X, Y) for your two equations?

b. You are told that there  are two linear  relationships between Y  and X  where  Y is the  variable measured  on  the  vertical  axis  and  X  is  the  variable  measured  on  the horizontal axis. The first linear relationship contains the points (125, 75) and (50, 150). The second linear relationship contains the points (50, 100) and (150, 150).

Find  the  equations for  the  two  lines  and  then  calculate  the  solution  (X,  Y)  for these two equations.

c. You are told that there  are two linear  relationships between Y  and X  where  Y is the  variable  measured  on  the  vertical  axis  and  X  is  the  variable  measured  on  the horizontal axis. The first linear relationship is described as follows: the Y variable is  equal  to  5  more  than  twice  the  X  variable.  The  second  linear  relationship  is described  as  follows:  the  X  variable  is  equal  to  5  less  than  twice  the  Y  variable.

Find  the  equations  for  the  two  lines  and  then  calculate  the  solution  (X,  Y)  for these two equations.

Question 2. Math Review Question:

a. [Note:  Professor  Kelly  found  physics  impossible!  So,  be assured  that  you  do  not  need  to  know  ANY  physics  to  answer  this question-just apply  the  standard  slope-intercept  form  equation  to  this  new  setting.  Be  brave, you  non-physicists!] An  experimental  physicist  is  attempting  to  determine  the relationship  between  the  mass  and  kinetic  energy  of  a  particle  in  a  laboratory setting. After two trials, she has observed the following data, written as an ordered pair  (mass,  kinetic  energy):  (2,  4)  and  (4,  10).  As  her  lab  assistant,  what  is  the slope-intercept form of the straight line that expresses kinetic energy as a function
of  mass?  Based  on  this  estimate,  what  kinetic  energy  would  we  expect  for  a particle that has a mass of 8 units? Theoretically, a particle with zero mass should have zero kinetic energy. Is our experimental model consistent with this?

b. Suppose  you  are  given  a  line described  by  the  equation  y  =  50 - 4x  and  you  are told  that  the  x  value  has  increased  by  10  units  at  every  y  value.  What  is  the equation for the new line? Show your work.

c. Suppose  you  are  given  a  line  described  by  the  equation  y  =  50 - 4x  and  you  are told that  the  x  value  has  doubled  at  every  y  value.  What  is  the  equation  for  the new line? Show your work.

d. You are given two equations.

Equation 1: y = 10 + 2x
Equation 2: y = 26 – 2x

But, you are also told that equation 1 has changed and now the y value is 10 units bigger at every x value than it was initially.

i. Write the equation that represents the new Equation1’.

ii. Given the new Equation 1’ and Equation 2, find the (x,y) solution that represents the intersection of these two lines.

Question 3. First  Percentage  Change  Problem:

This  question  reviews  some  pretty  simple math  in  an  attempt  to  make  your  aware  that  you  know  how  to  change  an  index
number.  This  question  allows  you  to  practice  this  technique  in  a  familiar  setting so that later in the course when we do this in an economics context it might seem more familiar. Tom’s chemistry class has had three exams. The exams in the class 3 are all  given the same weight in the grading scale, but each exam has a different number  of  total  possible  points.  On  the  first  exam  Tom  made  a  60  out  of  75 points, on the second exam Tom made a 51 out of a possible 60 points, and on the third exam Tom made a 40 out of 50 points.

a. What is Tom’s grade on the first  exam if the first  exam score was converted to a 100 point scale?

b. What is Tom’s grade  on  the  second  exam  if  the  second  exam  score  was converted to a 100 point scale?

c. What is Tom’s grade on the third exam if the third exam score was converted to a 100 point scale?

d. On  a  100  point  scale  with  each  exam  given  the  same  weight  in  the calculation, what is Tom’s average grade?

e. If Tom wants to raise his average grade and the fourth exam has 60 points, how many points must Tom get on this exam?

Question 4. Second  Percentage  Change  Problem:

Bernie  stays  confused  about  percentages and  he  is  struggling  to  figure  out  what  he  needs  to  do  on  his  final  exam  in Chemistry  in  order  to  get  the  B  he  needs.  Here  is  the  information  he  has:  he scored a 40 out of a possible 50 points on his first midterm in the class; he scored a  15  out  of  25  points  on  the  second  midterm  (it  was  tough!)  and  on  the  third midterm  he  got  an  85  out  of  a  100  points.  He  knows  that  his  final  will  have  50 points.  And,  he  also  knows  that  each  midterm  has  equivalent  weight  to  all  the other midterms and that this weight is 20% of his final grade; he also knows that the  final  exam  will  be  weighted  as  40%  of  his  final  grade;  and  to  get  a  B  in  the class  he  knows  that  his  total  weighted  average  must  be  at  least  an  84  on  a  100 point  scale.  So,  what  score  will  Bernie  need  to  make  on  that  final  exam  if  he  is going  to  get  a  B  in  the  class?  Show  your  work!  Here  you  will  find  it  helpful  to work in decimals instead of fractions: try to do this without a calculator though!

Question 5. Opportunity Cost:

Pareto can travel from Madison to Minneapolis in one hour by taking an airplane. The same trip takes 5 hours by bus. Airfare is $90 and the bus fare is $40. If he is not travelling, Pareto can work to earn $25/hour.

Answer the following questions:

a. What is the opportunity cost if Pareto travels by bus?

b. What is the opportunity cost if Pareto travels by plane?

c. Which of these two travel options is cheaper for Pareto if Pareto considers the opportunity costs involved in this travel?

d. Suppose  Walras  is  considering  the  same  trip  but  Walras  only  earns  $7/hour when  he  is  not  travelling.  Which  of  these  two  travel  options  is  cheaper  for Walras  given  this  information?  Explain  the  intuition  behind  the  difference  in answers you get for Pareto and Walras.  

Question 6. PPF and Opportunity Cost:

The following two graphs represent production possibility frontiers for countries A and B. Both of these countries produce milk (measured in gallons) and pork (measured in pounds).

180_PPF and Opportunity Cost.jpg

a. Explain what a production possibility frontier represents.

b. What is country A’s opportunity cost of producing one gallon of milk in terms of pork?  What is country A’s opportunity cost of producing one pound of pork in terms of milk?

c. Is country B’s opportunity cost of producing one gallon of milk higher at point E than at point F?  Explain.

Question 7. PPF and Comparative Advantage:

The dwarves of Erebor devote 10 hours each day to producing either beer or wine. They can produce a barrel of beer in 2 hours, but need 5 hours to make a bottle of  wine. The nearby  (more laid-back) elves of Mirkwood devote only 6 hours each day to working.
However, they need  only 2 hours to produce either a barrel of beer or a bottle of wine.

a. Who has the comparative advantage in producing wine? Who has the comparative advantage in producing beer?

b. Draw  the  PPF  for  dwarves  with  wine  on  the  x-axis.  On  a  separate  graph,  do  the same for the elves. What do the slopes signify?

c. The  dwarves  and  elves  trade. Draw  the  joint  PPF  for  both  dwarves  and  elves. Label the kink point on this graph. What do the slopes of this joint PPF signify?

d. What is the range of trading price for one bottle of wine in terms of barrels of beer?

e. With trade, would it be possible for each nation to consume 1 barrel of beer and 2 bottles of wine? Is the production at the efficient level? Now, (spoiler alert) the dark lord Sauron has fallen, and the men of Gondor decide to join the international trade network of theMiddle Earth. Men work 8 hours a day. They need 2 hours to produce a barrel of beer and 4 hours to produce a bottle of wine.

f. Find the joint PPF for the dwarves, the elves, and men. Label all the kink points. Draw a graph of this joint PPF and then provide the equations for each segment of the joint PPF.

g. Find the range of trading price for one barrel of beer in terms of bottles of wine.

Solution Preview :

Prepared by a verified Expert
Microeconomics: What is the opportunity cost for pareto travels
Reference No:- TGS01616076

Now Priced at $50 (50% Discount)

Recommended (94%)

Rated (4.6/5)