What is a weight in a linear combination


Assignment:

Q1: Determine if b is a linear combination of a1,a2,a3

         (1)           (0)            (5)         (2)
a1 =  (-2) ,  a2= (1) ,  a3 =  (-6) , b=  (-1)
         (0)           (2)            (8)         (6)

Q2: List five vectors in span { }. For each vector, show the weights on used to generate the vector and list the three entries of the vector. Do not make a sketch.

a)
         (7)           (-5)

v1=    (1)   , v2=  (3) 

         (-6)          (0)

b)
         (3)          (-2)       
v1  =  (0)  , v2= (0)
         (2)          (3)

Q3: Let a1 = (1)   a2 =   (-2)    andb =   (4)
                  (4)            (-3)                (1)

                 (-2)            (-7)                (h)

For what value(s) of h is b in the plane spanned by and ?

Q4: True or false, explain answer.

a) Any list of five real numbers is a vector in .

b) The vector u results when a vector u-v is added to the vector v.

c) The weights in a linear combination cannot all be zero.

d) When u and v are nonzero vectors, Span {u,v} contains the line through u and the origin.

e) Asking whether the linear system corresponding to an augmented matrix [ b] has a solution amounts to asking whether b is in Span { }.

Solution Preview :

Prepared by a verified Expert
Mathematics: What is a weight in a linear combination
Reference No:- TGS01930779

Now Priced at $25 (50% Discount)

Recommended (97%)

Rated (4.9/5)