This problem provides a numerical example encryption using a one-round version of DES. We start with the same bit pattern for the key K and the plaintext, namely:
in hexadecimal notation: 0 1 2 3 4 5 6 7 8 9 A B C D E F
in binary notation: 0000 0001 0010 0011 0100 0101 0110 0111
1000 1001 1010 1011 0100 1101 1110 1111
(1) Derive K1, the first-round subkey.
(2) Derive L0, R0.
(3) Expand R0 to get E[R0], where E[.] is the expand function of DES. (Refer to Term Project)
(4) Calculate A = E[R0] K1 .
(5) Group the 48-bit result of (4) into sets of 6 bits and evaluate the corresponding Sbox substitutions.
(6) Concatenate the results of (5) to get a 32-bit result, B.
(7) Apply the permutation to get P(B).
(8) Calculate R1 = P(B) L0
(9) Write down the ciphertext.