1. An engine takes in streams of water at 1208C, 5 bar and 2408C, 5 bar. The mass flow rate of the higher temperature stream is three times that of the other. A single stream exits at 5 bar with a mass flow rate of 4 kg/s. There is no significant heat transfer between the engine and its surroundings, and kinetic and potential energy effects are negligible. For operation at steady state, determine the rate at which power is developed in the absence of internal irreversibilities, in kW.
2. An inventor has provided the steady-state operating data shown in Fig. P6.101 for a cogenerationsystem producing power and increasing the temperature of a stream of air. The system receives and discharges energy by heat transfer at the rates and temperatures indicated on the figure. All heat transfers are in the directions of the accompanying arrows. The ideal gas model applies to the air. Kinetic and potential energy effects are negligible. Using energy and entropy rate balances, evaluate the thermodynamic performance of the system.