Question 1
Which one of the following is the Z- transform of x[n] = 2nu[-n] + (1/4)n u(n-1)
(A) (-2z-1)/(1-2z-1) - 1/4.(z-1/1-1/4z-1), 1/4<|z|<2
(B) (2z-1)/(1-2z-1) + 1/4.(z-1/1-1/4z-1), 1/4<|z|<2
(C) (-2z-1)/(1-2z-1) + 1/4.(z-1/1-1/4z-1), 1/4<|z|<2
(D) (2z-1)/(1-2z-1) - 1/4.(z-1/1-1/4z-1), 1/4<|z|<2
Question 2
The Z transform of the sequence
is
(A) (z/2)/(1-z/2) + z2/(z2 - 1/4) + (z/3)/(z2-1/9); 1/2<|z|<2
(B) (z/2)/(z/2 -1) + z2/(z2 - 1/4) + (z/3)/(z2-1/9); 1/2<|z|<2
(C) (z/2)/(z/2 -1) + z2/(1/4 - z2) + (z/3)/(z2-1/9); 1/2<|z|<2
(D) Z transform is not possible
Question 3
If Z transform of x(n) is X(z) and Xz = 12z2/(3z2 + 2z -1) then initial value of x(n) is ________.
Question 4
The impulse response of the LTI system is
h(n) = δ(n-5) - (-0.5)n u(n) - 8(2)n u(-n-3)
The transfer function of the LTI system is
(A) H(z) = z-5 - 1/(1 + 0.5z-1) + 2z2/(1- 2z-1), 1/2 < |z| < 2
(B) H(z) = z-5 + 1/(1 + 0.5z-1) - 2z2/(1- 2z-1), 1/2 < |z| < 2
(C) H(z) = z-5 + 1/(1 + 0.5z-1) + 2z-2/(1- 2z-1), 1/2 < |z| < 2
(D) H(z) = z-5 + 1/(1 + 0.5z-1) - 2z-2/(1- 2z-1), 1/2 < |z| < 2
Question 5
The Z transform pair (1/2)n u(n) ↔zr X(z), and y(n) zr↔ y(z). If Y(z) = [X(z)]2 then y(n) is
(A) (1/2)2n u(n)
(B) n(1/2)n+1 u(n)
(C) n(1/2)2n u(n)
(D) (n+1)(1/2)n u(n)