The slurry effluent from the reactor digester consisting of


Aluminum sulfate, commonly called alum, is produced as a concentrated aqueous solution from bauxite ore by reaction with aqueous sulfuric acid, followed by a three-stage, countercurrent washing operation to separate soluble aluminum sulfate from the insoluble content of the bauxite ore, followed by evaporation. In a typical process, 40,000 kg/day of solid bauxite ore containing 50 wt% A1203 and 50% inert is crushed and fed together with the stoichiometric amount of 50 wt% aqueous sulfuric acid to a reactor, where the A1203 is reacted completely to alum by the reaction

2444_Aqueous sulfuric acid to a reactor.jpg

The slurry effluent from the reactor (digester), consisting of solid inert material from the ore and an aqueous solution of aluminum sulfate is then fed to a three-stage, countercurrent washing unit to separate the aqueous aluminum sulfate from the inert material. If the solvent is 240,000 kg/day of water and the underflow from each washing stage is 50 wt% water on a solute-free basis, compute the flow rates in kilograms per day of aluminum sulfate, water, and inert solid in each of the two product streams leaving the cascade. What is the percent recovery of the aluminum sulfate? Would the addition of one more stage beworthwhile?

Solution Preview :

Prepared by a verified Expert
Chemical Engineering: The slurry effluent from the reactor digester consisting of
Reference No:- TGS01175460

Now Priced at $15 (50% Discount)

Recommended (98%)

Rated (4.3/5)