1. Multiply. (3x + 9)2
A) 9x2 + 54x + 81 B) 3x2 + 27x + 81 C) 9x2 + 27x + 81 D) 9x2 + 81
2. The diameter of the Milky Way disc is approximately 9 *1020 meters. How long does it take light, traveling at 1016 m/year to travel across the diameter of the Milky Way?
A) 9,000 years B) 900,000 years C) 900 years D) 90,000 years
3. Multiply. (4m – 3n)(4m + 3n)
A) 16m2 + 24mn – 9n2 B) 16m2 + 9n2 C) 16m2 – 24mn + 9n2 D) 16m2 – 9n2
4. Simplify. (a4b2)4
A) a4b6 B) a4b8 C) a8b6 D) a16b8
5. Remove the parentheses. –(3x + 5y)
A) 3x – 5y B) –3x + 5y C) –3x + y D) –3x – 5y
6. Find the value of the polynomial x3 – 4x when x = –2.
A) 2 B) –2 C) 14 D) 0
7. Give the degree. 7x
A) 7 B) 0 C) 1
8. Multiply. Write the answer in scientific notation.
(2.4 *10–5)(4 * 10–4)
A) 9.6 *10–10 B) 9.6 * 10–9 C) 9.6 *1020 D) 4.4 * 10–11
9. A triangle has sides 2x – 5, 3x + 1, and 4x + 2. Find the polynomial that represents its perimeter.
A) 9x – 2 B) (2x – 5)(3x + 1)(4x + 2) C) 10x – 8 D) 24x – 10
10. Arrange in descending-exponent form and give the degree.
8 – x
A) –x + 8; 0 B) x – 8; 1 C) x – 8; 0 D) –x + 8; 1
11. Find the value of the polynomial –x2 + 10x – 10 when x = –5.
A) –65 B) –85 C) –35 D) 15
12. Factor completely. 6x2 + 7x + 2
A) (3x + 1)(2x + 2) C) (3x – 2)(2x – 1)
B) (3x + 2)(2x + 1) D) (6x + 2)(x + 1)
13. Factor. 8m4n – 16mn4
A) 8m4n(1 – 2n3) B) 8m4n4(m – 2n) C) 8mn(m3 – 2n3) D) 8m4n(1 – 16mn4)
14. Factor completely. 3(x – 2)2 – 3(x – 2) – 6
A) 3(x – 2)(x – 1) B) 3(x – 2)(x + 1) C) 3(x – 4)(x + 1) D) 3(x – 4)(x – 1)
15. Factor completely. 6x2 – xy – 5y2
A) (3x – 5y)(2x + y) C) (3x + 5y)(2x – y)
B) (6x – 5y)(x + y) D) (6x + 5y)(x – y)
16. Rewrite the middle term as the sum of two terms and then factor completely.
10x2 + 19x + 6
A) (5x – 2)(2x – 3) C) (5x + 1)(2x + 6)
B) (10x + 2)(x + 3) D) (5x + 2)(2x + 3)
17. Factor completely. y3 – 12y2 + 36y
A) y(y – 9)(y + 4) B) y(y – 6)2 C) y(y + 6)2 D) y(y + 12)(y – 3)
18. State which method should be applied as the first step for factoring the polynomial.
2a2 + 9a + 10
A) Use the ac method (or trial and error). C) Group the terms.
B) Find the GCF. D) Factor the difference of squares.
19. Factor. 18x3 – 36x2
A) 18x2(x – 36) B) –18x(x2 – 36x) C) –9x2(–2x + 4) D) –9x2(–2x – 36)
20. Factor completely. 5a2 – 125
A) (5a – 1)(a – 125) B) 5a(a – 25) C) 5(a + 5)(a – 5) D) 5(a – 5)2
21. Factor completely. b2 – ab – 6a2
A) (b + 3a)(b – 2a) B) (b – 6a)(b + a) C) (b + 6a)(b – a) D) (b – 3a)(b + 2a)
22. Factor completely. 12x3 – 3xy2
A) 3x(4x – y)(x + y) C) 12x(x – 3y)(x – y)
B) 3x(2x – y)2 D) 3x(2x + y)(2x – y)
23. Factor completely. 6z3 – 27z2 + 12z
A) 3z(2z – 1)(z – 4) C) 2z(3z – 1)(z – 4)
B) 6z(z – 1)(z – 12) D) z(6z – 1)(z – 12)
24. State which method should be applied as the first step for factoring the polynomial.
(x + 7y)2 – 25
A) Factor the difference of squares. C) Use the ac method (or trial and error).
B) Find the GCF. D) Group the terms.
25. Factor. 3a2(a – b) – 6a(a – b) + 21(a – b)
A) 3(a – b)(a2 – 2a + 7) C) (a – b)(3a2 – 6a + 21)
B) (3a – b)(a2 – 2a + 7) D) 3(a – b)(a2 – 6a + 21)
26. Solve. x2 = –6x
A) 2, 6 B) 0, –6 C) 0, 6 D) 6, –6