Solid state device theory


Assignment:

Question 1. A semiconductor sample has the band diagram below.

(a) Is this semiconductor in equilibrium? Explain.
(b) Sketch the electric field versus x.
(c) Roughly sketch n and p versus x.
(d) Make a rough sketch of the electron drift current density and the electron diffusion current density versus x. Be sure to graph the proper polarity of the current densities at all points.

798_Solid State Device.JPG
Question 2. A semi-infinite p-type bar is illuminated with light generating GL electron-hole pairs/cm3-s uniformly throughout the volume of the semiconductor. Simultaneously, carriers are extracted at x=0 making Δnp = 0 at x= 0. Assuming steady state condition has been established and Δnp<0 , derive an expression for Δnp(x).

2350_Semi conductor.JPG


Question 3. A p-Si photoconductor is to detect optical pulses having the waveform shown below.

2157_Photo conductor.JPG
Each pulse generates electron-hole pairs (ehp). When the pulse terminates, the ehp recombine

Δnp(t) = Δnp(0) exp( -t/ΤSRH)

according to the relation where t = 0 refers to the time when the light pulse is turned off. ?np(t) must have decreased to 0.01?np(0) before the next pulse is applied for proper photoconductor operation.
For σn = 10-16 cm2
and vth = 107 cm/s, determine NT for this to happen.

Solution Preview :

Prepared by a verified Expert
Electrical Engineering: Solid state device theory
Reference No:- TGS01897681

Now Priced at $30 (50% Discount)

Recommended (99%)

Rated (4.3/5)