sin (cot-1 {cos (tan -1x)})
tan-1 x = A => tan A =x
sec A = √(1+x2) ==> cos A = 1/√(1+x2) so A = cos-1(1/√(1+x2))
sin (cot-1 {cos (tan -1x)}) = sin (cot-1 {cos (cos-1(1/√(1+x2))})
=sin (cot-1 {(1/√(1+x2))})
if cot-1 {(1/√(1+x2))} = B
{(1/√(1+x2))} = cotB ==> cosec B = {(√[(2+x2)/(1+x2)])}
sin B = {(√[(1+x2)/(2+x2)]} ==> B = sin -1 ({(√[(1+x2)/(2+x2)]})
sin {sin -1 ({(√[(1+x2)/(2+x2)]})} = √[(1+x2)/(2+x2)]
the answer is √[(1+x2)/(2+x2)]