Show that for all sample functions ntnbspomega except a set


Let {Xii≥1} be the inter-renewal intervals of a renewal process and assume that E [Xi] = ∞. Let b > 0 be an arbitrary number and Xbe a truncated rv defined by XXif X≤ and Xotherwise.

(a) Show that for any constant M > 0, there is a sufficiently large so that E[Xi] ≥ M.

(b) Let  {N? (t); t≥0} be  the  renewal  counting  process  with  inter-renewal  intervals {Xii ≥ 1} and show that for all t > 0, N? (t) ≥ N(t).

(c) Show that for all sample functions  N(tω),  except  a  set  of  probability  0, N(tω)/t 2/M for all sufficiently larget. Note: Since is arbitrary, this means that lim N(t)/t = 0 WP1.

Text Book: Stochastic Processes: Theory for Applications By Robert G. Gallager.

Request for Solution File

Ask an Expert for Answer!!
Advanced Statistics: Show that for all sample functions ntnbspomega except a set
Reference No:- TGS01207753

Expected delivery within 24 Hours