Regression suggest about the relationship between variable


Assignment:

Cut and past two regressions results from Stata. The first one is a simple regression of your dependent variable on your key independent variable (use logs if you think it necessary). The second is a multiple variable regression, where you regress your dependent variable on your key independent variable and at least two more control variables (In this case, set manufacturing and GDP as two more control variables).

Answer the following questions:

1) What does the simple regression suggest about the relationship between your x and y variables? Is the slope coefficient statistically significant? What is the size? How do you interpret it?

      Source |       SS           df       MS      Number of obs   =    12,248

-------------+----------------------------------   F(1, 12246)     =  37067.11

       Model |  103764.011         1  103764.011   Prob > F        =    0.0000

    Residual |  34280.9068    12,246  2.79935544   R-squared       =    0.7517

-------------+----------------------------------   Adj R-squared   =    0.7516

       Total |  138044.917    12,247  11.2717333   Root MSE        =    1.6731

------------------------------------------------------------------------------

       lnco2 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

       lnPop |   .9880223   .0051318   192.53   0.000     .9779631    .9980815

_cons |   -6.35125   .0833884   -76.16   0.000    -6.514704   -6.187796

2) Describe the additional control variables that you included and why you included them in your regression. Now explain the results: What does the table suggest about how they affect your dependent variable (or not) and how do you interpret the coefficients and the t-statistics?

      Source |       SS           df       MS      Number of obs   =     7,365

-------------+----------------------------------   F(3, 7361)      =  30919.34

       Model |  62263.3061         3  20754.4354   Prob > F        =    0.0000

    Residual |  4941.02965     7,361  .671244349   R-squared       =    0.9265

-------------+----------------------------------   Adj R-squared   =    0.9264

       Total |  67204.3358     7,364  9.12606407   Root MSE        =     .8193

------------------------------------------------------------------------------

       lnco2 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

       lnPop |   .1871355   .0066558    28.12   0.000     .1740882    .2001827

      lnManu |    .418834    .016292    25.71   0.000      .386897     .450771

       lnGDP |   .3929029   .0179113    21.94   0.000     .3577917    .4280142

       _cons |  -11.79659    .107627  -109.61   0.000    -12.00757   -11.58561

------------------------------------------------------------------------------

3) What happens to the size and significance of your key independent variable across the two regressions? Does it change in an appreciable manner when you include additional controls? If so, why do you think this is? If not, why might this be?

Solution Preview :

Prepared by a verified Expert
Basic Statistics: Regression suggest about the relationship between variable
Reference No:- TGS02133573

Now Priced at $30 (50% Discount)

Recommended (91%)

Rated (4.3/5)