Refer to the prostate cancer data set in appendix cs and


Refer to the Prostate cancer data set in Appendix C.S and Case Study 9.30. For the best subset model developed in Case Study 9.30, perform appropriate diagnostic checks to evaluate outliers and assess their influence. Do any serious multicollinearity problems exist here?

Case Study 9.30

Refer to the Prostate cancer data set in Appendix C5. Serum prostate-specific antigen (PSA) was determined in 97 men with advanced prostate cancer. PSA is a well-established screening test for prostate cancer and the oncologists wanted to examine the correlation between level of PSA and a number of clinical measures for men who were about to undergo radical prostatectomy. The measures are cancer volume, prostate weight. patient age, the amount of benign prostatic hyperplasia. seminal vesicle invasion, capsular penetration, and Gleason score. Select a random sample of 65 observations to use as the model-building data set. Develop a best subset model for predicting PSA. Justify your choice of model. Assess your model's ability to predict and discuss its usefulness to the oncologists.

Appendix C5

A university medical center urology group was interested in the association between prostate-specific antigen (PSA) and a number of prognostic clinical measurements in men with advanced prostate cancer. Data were collected on 97 men who were about to undergo radical prostectomies. Each line of the data set has an identification number and provides information on 8 other variables for each person. The 9 variables are:

Request for Solution File

Ask an Expert for Answer!!
Basic Statistics: Refer to the prostate cancer data set in appendix cs and
Reference No:- TGS01471948

Expected delivery within 24 Hours