Prove that pro-jections of p onto are concyclic


1. The sum of some consecutive integers is 2012.   Find the smallest of these integers.

2. How many 5-digit numbers have at least one digit of 5?

3. Find all integers n for which n2 - n + 1 divides n2012 + n + 2001.

4. Let a and b be real numbers such that 2a2 + 3ab + 2b2 ≤ 7. Prove that max(2a + b, a + 2b) ≤ 4.

5. Find all pairs (m, n) of integers such that m3 + n3 = 2015.

6. Let P (x) = 3x3 - 9x2 + 9x.  Prove that P (a2 + b2 + c2) ≥ P (ab + bc + ca) for all real numbers a, b, c.

7. For a positive integer N , let r(N ) be the number obtained by reversing the digits of N. For example, r(2013) = 3102. Find all 3-digit numbers N for which r2(N ) - N 2 is the cube of a positive integer.

8.  Solve the system of equations

   log xy = 5/log z, , log yz =8/log x, , log zx =9/log y

9.  In  circle  C   chords  AB   and  XY intersect  at  P .     
Prove  that  the  pro-jections of P  onto AX, BX, AY , BY  are concyclic if and only if the midpoints of AX, BX, AY, BY  are the vertices of a rectangle.

10.(a) Give example of triple (a, b, c) of even positive integers such that ab + 1, bc + 1, ca + 1 are all perfect squares.

(b)  Are there triples (a, b, c) of odd positive integers such that ab + 1, bc + 1, ca + 1 are all perfect squares?

Solution Preview :

Prepared by a verified Expert
Biology: Prove that pro-jections of p onto are concyclic
Reference No:- TGS0688226

Now Priced at $40 (50% Discount)

Recommended (94%)

Rated (4.6/5)