Properties of the determinant function


Assignment:

Vectors in 2-Space and 3-Space : Properties of the determinant function

Q1. Verify that det(AB) = det(A) det(B) for

            A =   |2   1   0|        and       B =    |1   -1   3|

                    |3   4   0|                               |7    1   2|

                    |0   0   2|                               |5    0   1|

Is det(A+B) = det(A) + det(B) ?

Q2. Let A =    |a   b   c|

                      |d   e   f|

                      |g   h   i|

Assuming that det(A) = -7, find

b) det(A-1)

e)  det       |a   g   d|

                  |b   h   e|

                  |c   i    f|

Q3. Prove the identity without evaluation the determinants.

      |a1 + b1|        |a1 - b1      c1|                   |a1    b1    c1|

      |a2 + b2|        |a2 - b2      c2|   =    -2       |a2    b2    c2|

      |a3 + b3|        |a3 - b3      c3|                   |a3    b3    c3|

Q4. Let A and B be n x n matrices.  Show that if A is invertible,

       then det(B) = det(A-1BA)

Q5. Prove that a square matrix A is invertible if and only if ATA is invertible.

Q6. a) In the accompanying figure, the area of the triangle ABC can be expressed as

area ABC = ½    |x1    y1    1|

                          |x2    y2    1|

                          |x3    y3    1|

Note: In the derivation of this formula, the vertices are labeled such that the triangle is traced counterclockwise proceeding from (x1, y1) to (x2, y2) to (x3, y3).  For a clockwise orientation, the determinant above yields the negative of the area.

b)  Use the result in (a) to find the area of the triangle with vertices (3,3), (4,0), (-2, -1).

645_determinant.JPG

Figure

Euclidean Vector Spaces: Euclidean n-Space

Q1. Let u = (4, 1, 2, 3), v = (0, 3, 8, -2), and w = (3, 1, 2, 2).  Evaluate each expression.

a) ||u + v||    

b) ||u ||   +  || v ||

c) || -2u||   +  2 || u||

d) ||3u - 5v + w||

e) (1/||w||)w

f) ||1/ |w| w||

Q2. Find two vectors of norm 1 that are orthogonal to the tree vectors u = (2, 1, -4), v = (-1, -1, 2, 2), and w = (3, 2, 5, 4).

Q3. Find u · v given that ||u + v|| = 1 and  ||u - v||   = 5

Q4. Prove the following generalization of Theorem 4.1.7.  If v1, v2, ..., vr are pairwise orthogonal vectors in Rn, then

||v1 + v2 + ... + vr ||2 =   ||v1||2  +  || v2|| 2  + ... +   ||vr||2

Q5. Use the Cauchy-Schwarz inequality to prove that for all real values of a, b, and q,

(a cosq + b sinq)2  ≤ a2 + b2

Provide complete and step by step solution for the question and show calculations and use formulas.

Solution Preview :

Prepared by a verified Expert
Mathematics: Properties of the determinant function
Reference No:- TGS01924399

Now Priced at $20 (50% Discount)

Recommended (97%)

Rated (4.9/5)