FUNCTIONS AND LIMITS
1. A rule that assigns to each element x in X a unique element y in Y is called a function from
a) X to X   b) X to Y   c) Y to Y
2. If f : X → Y is a function, then the elements of X are called
a) pre-images   b) images   c) constantans   d) ranges
3. If f : X → Y is a function and x∈X, then
a) f (x) = 1   b) f(x) ∈Y   c) f (x) ∈ X   d) f(x) ∉Y
4. If f: X → f(X) is a function, then the elements of f(X) are called
a) pre-images b) images c) constantans d) ranges
5. If f : x → (3x - 5)/(x + 3) is a function, then f (0) =
a) 5   b) 3   c) - 3/5  d) - 5/3
6. If f : x → (2x2 + 5x -1)/(x + 3) is a function, then f(o) =
a) - 1/3  b) - 1/4  c) - 1/5  d) 0
7. If f : x → x2 - 2x +1 is a function, then f (t + 1) =
a) t + 1    b) t2 + 1   c) t - 1   d) t2 - 1
8. If f : X → Y is a function, then domain of f is
a) Y   b) X   c) - X   d) - Y
9. If f : X → Y is a function, then the subset of Y containing all images is called the
a) domain of f   b) range of f   c) subset of X   d) Superset of X
10. If f : X → Y is a function, then x∈X is called the
a) Dependent variable of f   b) independent variable of f  c) Value of f   d) range of f
11. f (x) = x2 - 4x + 1 is
a) trigonometric function   b) logarithmic function  c) exponential function   d) algebraic function
12. f (x) = log x is
a) trigonometric function   b) logarithmic function  c) exponential function   d) algebraic function
13. f (x) = ex is
a) trigonometric function   b) logarithmic function  c) exponential function   d) algebraic function
14. f (x) = ax + b, a ≠ 0 is
a) trigonometric function   b) cubic function  c) quadratic function   d) linear function
15. The graph of a linear function is
a) parabola   b) ellipse   c) hyperbola   d) straight line
16. A function f : X → X defined by f(x) = x, ∀ x∈ X is called the [1/2 f-1 (x)]
a) trigonometric function   b) cubic function  c) quadratic function   d) identity function
17. The linear function f (x) = ax +b is an identity function if
a) a = 0, b =1   b) a = 1, b =0   c) a = 1, b =1   d) a = 0, b =0
18. If K is a constant, then the function f : x → k is
a) constant function   b) cubic function  c) quadratic function   d) identity function
19. sinh x =
a) (ex + e- x)/2  b) (ex - e- x)/2  c) (ex - e- x)/(ex + e- x)  d) (ex + e- x)/(ex - e- x)
20. tanh x =
a) (ex + e- x) 2  b) (ex - e- x)/2  c) (ex - e- x)/(ex + e- x)  d) (ex + e- x)/(ex - e- x)
21. cosh 2 x - sinh 2 x =
a) - 2   b) -1   c) 1   d) 2
22. sinh -1 x =
a) In(x + √(x2+1))  b) In(x + √(x2 - 1))  c) 1/2 In ( 1+ x )/(1- x)  d) 1/2 In ( x +1 )/(x -1)
23. Equations x = 3cos t and y = 3 sin t represent the equation of
a) line   b) circle   c) parabola   d) hyperbola
24. If f(-x) = f(x) for every number x in the domain of f, then f is
a) linear function   b) periodic function  c) odd function   d) even function
25. If f(-x) = -f(x) for every number x in the domain of f, then f is
a) linear function   b) periodic function  c) odd function  d) even function
26. f (x) = cos x is
a) linear function   b) quadratic function  c) odd function  d) even function
27. f (x) = x cotx is
a) linear function   b) quadratic function  c) odd function  d) even function
28. if f (x) = x4 - 4x2 + 4, then f (√(x +1))=
a) x -1   b) (x-1)2   c) x2 - 1   d) x2 + 1
29. If f(x) = √(Cos(2Π sin x)) , then f ( Π/2 ) =
a) - 1   b) 0   c) 1   d) √2
30. If f(x) = √(2cos(2Πsinx)), then f ( Π/2 ) =
a) - 1   b) 0   c) 1   d) √2
31. If f(x) = √(x+4), then f (x2 + 4) =
a) x2 - 8   b)√(x2 - 8)  c) √(x2 + 8)  d) x2 + 8
32. If f(x) = x3 + 2x2 - 1, then (f (a + h) - f (a))/h
a) 0   b) 1   c) h2 +a2   d) h2+(3a+2)h+3a2+4a
33. If f(x) = x3 + 2x2 - 1, then (f (1+ h) - f (1))/h
a) h   b) h2- 5h + 7   c) h2 + 5h + 7   d) h2 + 5h - 7
34. If P is the perimeter of a square and A is its area, then P=
a) √A   b) 2√A  c) 3√A  d) 4√A
35. If A is the area of the circle and C is its circumference C, then C =
a) 8√(ΠA)  b) 4√(ΠA)  c) 2√(ΠA)  d) √(ΠA)
36. The volume of a cube of side length 2 is
a) 2 cubic units   b) 4 cubic units  c) 8 cubic units  d) 16 cubic units
37. If f(x) = √(x2 - 4) , then domain of f is
a) (-∞, -2] ∪ [2, ∞)  b) (-∞, ∞)  c) [-2, 2]  d) [-3, 3]
38. if f (x) = |x|, then range of f is
a) (-∞, 0]  b) [0, ∞)  c) (-∞, ∞)  d) none of these
39. x = a secθ, y = b tanθ are perimeter equations of
a) circle   b) parabola   c) ellipse   d) hyperbola
40. If f(x) = x - 2 and f(x) = √(x2 + 1), then (f o g) (x) =
a)√(x2 +1) - 2 b) √(x2 - 4x + 5)  c) x2 - 1 d) x2 - 4x + 5
41. If f(x) = (2x +1)/(x -1) , then f-1 (x)
a) x -1/2x +1  b) x - 2/x +1  c) x +1/x - 2  d) 2x - 6/
42. f : x → √(3x2 -1) and g : x → sin x , then f o g : x →
a) sin(3x2 - 1)  b) sin√(3x2 - 1)  c) √(3sinx2 -1)  d) √(3x2 - 1sinx)
43. lim    (x3 - x)/(x +1) = 
    x→-1
a) 5  b) 3  c) 2  d) 0
44. lim   (2x2 - 32)/(3 + 4x2 ) =
     x→4
a) 5  b) 3  c) 2  d) 0
45. lim  (x - 2)/(√x - √2) =
     x→2
a)√2  b) 2  c) 2√2  d) 0
46. lim   (tanx)/x =
     x→0
a) 0  b) 1  c) 2  d) 6
47. lim   (sin6x)/x =
     x→0
a) 0   b) 1  c) 2  d) 6
48. lim   sin x0/x = 
     x→0
a) Π/180   b) 180/Π  c) 180Π  d) 1
49. lim   (sin ax)/(sin bx) = 
     x→0
a) 1/ab  b) b/a  c) a/b  d) 1
50.  lim   x2/(sin axsin bx) = 
     x→0
a) 2/3  b) 3/2  c) 1/6  d) 1
51. lim  (1 + 1/x)x = 
     x→∞
a) 2/3  b) 3/2  c) 1/6  d) 1
52. lim  (x/(1 + x))x = 
     x→0
a) e-1   b) e1/2   c) e2   d) e3
53. lim = (√(1+sinx - √(1 - sinx))/x = 
     x→0
a) -1   b) 0  c) 1  d) 2
DIFFERENTIATION
1.	lim    f (x + δ x) - f (x)/δx =
  δx→0
a)	f'(x) 	b)	f'(a) 	c)	f'(2) 	d) f'(0)
2.	d/dx (axm + bxn ) =
a) axm-1 + bxn-1 	b) amxm-1 + bnxn-1  c)	xm-1 + xn-1  d)	mxm-1 + nxn-1
 
3.	f (x) =	1/x -1 ⇒ f'(2) =
a)	1 	b)	0 	c)	- 1 	d)	- 2
4.	d/dx [ f (x) sin x] =
a) f'  (x) sin x + f(x) cos x  b) f' (x) sin x - f(x) cos x  c) f'  (x) cos x + f(x) sin x 	d) f' (x) cos x
5.	d/dx (- cosec x) =
a)	-cosecx cotx 	b)	cosecx cotx c)	- sin x 	d)	sec x tan x
6.	d/dx (cosec-1x)
a) 1/x√(x2 -1)  b) -	1/x√(x2 -1)  c)	1/1+ x2 d)	cot-1 x
7.	3x + 4y + 7 = 0 ⇒ dy/dx =
a)	3/4 	b) - 3/4 c) - 4/3  d)	0
8.	(1+ x2) d/dx (tan-1 x - cot-1 x) =
a)	-1 	b)	0  c)	1 	d)	2
 
9.	If f(x) = √(x + 1), then d/dx ((1/2 f-1 (x))  =
a)	0  	b)	x   c)	2x 	d)	3x
10.	1/x d/dx (sin x2 ) =
a)	2xcosx2	b)	cosx2	c)	2xcos2x	d)	2cosx2 1/3
11.	1/3x2 d/dx (t in x3 ) =
a)	sec2x3 	b)	3x2 sec2 x3 	c)	sec2 x 	d)	3sec2 x
12. 2√tan x d/dx √tan x =
a) 1/√tan x.sec2x  b)	0  c) sec2 x 	d) √tan x
13.	if f(x) = tanx, then f' (x) cos2 x =
a)	sec2 x 	b)	sec x 	c)	0 	d)	1
14.	If f(x) = √(x +1), then d/dx (1/2 f -1 (x) )
a) 	0 	b) x 	c)	2x 	d)	3x
15.	1/3x2 d/dx (tan x2 ) =
a)	sec2 x3  b)	3x2 sec2 x3 	c) sec2 x 	d) 3sec2 x
16.	If f(x) = tanx, then f' (x) cos2x =
a)	sec2 x  b) sec x  c) 0  d) 1
17.	d/dx tan-1 (sin 2x/1 + cos x ) =
a)	0  b) 2  c) 1  d) 0
18. 	d/dx cot-1 ((1+ cos x)/sin2x) =
a)	3  b) 2  c) 1  d) 0
19. 	d/dx [tan-1 √(1- cos x)/√(1+ cos x) ] =
a)	1 	b)	1/2  c)	0 	d)	-1
d [ ( -1	cot2 x +1 )]
 
20. d/dx [tan (sec-1(√(cot2x + 1)/cot2x)] =
21.	d/dx (ax) =
a) - cosec2 x 	b) sec2 x  c)	sec x 	d)	sec x tan x
22.	d/dx(5x - 2x) =
a)	5xln5- 2x ln2   b) 5x ln5 + 2x ln 2 c) 5x + 2x  d) 5x - 2x
23.	d/dx (cosh 3x) =
a)	3cosech3x 	b)	-3 sinh 3x 	c)	3 sinh 3x 	d)	3 coth 3x
24.	d/dx (coth x) =
a)	sec h2 x  b) -sec h2 x  c)	coth x	d)	cosechx
25. d/dx (cosech x) =
a)	- cosechxcothx 	b)	cosechxcothx 	c)	sechx tanh x   d)	- sechx tanhx
 
26.	d/dx (coth-1 x) =
a)	1/(1- x2) b)	1/(1+ x2)  c) -1/(1- x2)  d) -1/(1+ x2)
27.	If f (x) = sinx, then f' (cos-1 3x) =
a)	cos x 	b) - 3/√(1 - 9x2)  c) 3/√(1- 9x2)  d)	3x
28.	If f (x) = tan-1x, then f' (tan x) =
a)	1/(1+ x2) b)	sin2 x 	c)	cos2 x 	d)	sec2 x
29.	d/dx [e f(x) ] =
a)	e f( x)  b)	e(x)  c)	ef(x)/f'(x)  d)	ef(x)f'(x)
30.	d/dx [10sin x ] =
a)	10cos x  b) 10sin x cos x ln10 	c) 10sin x ln10 	d) 10cos x ln10
31.	If y = sin3x, then y4 =
a)	3sin 3x 	b)	9sin3x 	c)	27sin 3x 	d)	81 sin 3x
32.	If f= ex, then y4 =
a)	0 	b)	ex 	c)	2ex 	d)	4ex
33.	If f (x) = sinx, then f (sin-1 x) =
 
a)	1/√(1-x2)  b)	cos x 	c)	- sin x 	d)	-x
34.	ln (1 - x ) =
a)	x- x3/3!	+ x5/5!	- x7/7! +......  b) 1 - x2/2!	+ x4/4!	- x6/6! +......  c) - x - x2/2 - x3/3 - x4/4  d) x - x2/2 + x3/3 - x4/4 + ......
35.	cos x
a) x- x3/3!	+ x5/5!	- x7/7! +......  b) 1 - x2/2!	+ x4/4!	- x6/6! +......  c) - x - x2/2 - x3/3 - x4/4  d) x - x2/2 + x3/3 - x4/4 + ......
36.	ex
a) x + x2/2	+ x3/3 + x4/4 +......  b) 1 - x2/2!	+ x4/4!	- x6/6! +......  c) 1 + x + x2/2! + x3/3! +....  d) 1 - x + x2/2! - x3/3!
37.	If f (x) =   x3 = cos x	, then f' (x) =
                    7    =  4
a)	3x2	- sinx  	b)	3x2 - sinx  c)	3x2 - sinx  d)	0
     0      	4           	0      	0          7        4
38.	The function f (x) = x3 is
a)	increasing for x>0 	b)	decreasing for x < 0  c)	decreasing for x > 0 	d)	constant x > 0
39.	The minimum value of the function f (x) = 5x2 - 6x + 2 is
a)	1/5  b)	1/4  c)	1/3  d)	0
INTEGRATION 
1.	The integration is the reverse process of
a)	tabulation 	b)	sublimation 	c)	classification 	d) differentiation
2. ∫d/dx xn dx =
a)	xn+1/n + c  b)	xn-1/n -1 + c  c)	xn+1/n +1 + c  d)	xn + c
3. ∫cos ecxdx = ∫- cosec2 xdx
a)	cosx + c 	b) -cosx + c 	c)	tanx + c 	d)	cotx + c
4. ∫ -3cos ec23xdx =
a)	-cot3x + c 	b)	-cos3x + c 	c)	tan3x + c 	d)	cot3x + c
5. ∫(n +1)[x2 + 2x -1]n (2x + 2)dx =
a) (x2 + 2x -1)n+1 + c  b) (x2 + 2x -1)n +1  c)	(x2 + 2x -1)n-1 	d)	n(x2 + 2x -1)n-1
6. ∫ (x -1)/(x2 - 2x +1)dx  =
a)	1/2 ln(x2 - 2x +1) + c  b)	1/4ln(x2 - 2x +1) + c  c)	ln(x2 - 2x +1) + c 	d)	ln(2x - 2) + c
7. ∫ cosec2 x/ cot x dx =
a)	ln tanx + c 	b)	ln cotx + c 	c)	2 ln cotx + c 	d)	2 ln tanx + c
8. ∫ sec2 x/tan x + ∫cosec2 x/cot x dx =
a)	ln tanx + c 	b)	ln cotx + c 	c)	2 ln cotx + c 	d)	2 ln tanx + c
9. ∫(1/x - cosec2x/cot x)dx =
a) ln(x sinx) + c  b) ln(x sinx2x) + c  c) ln (x tanx) + c  d) ln (x cot x) + c
10. ∫ ( 1/x - sin 2x/tan x ) dx =
a)	ln (x sinx) + c 	b)	ln (x sinx2x ) + c 	c)  ln ( x tanx )+ c    d)	ln (x cot x) + c
11. ∫ ( ex + sin 2x/( sin2 x  ) dx =
a)	ln(ex sin2 x) + c  b)	ln(x sin2 x) + c  c)	ln(x cos2 x) + c  d)	ln(ex cos2 x) + c
12. ∫ etan x sec2 xdx =
a) -ecot x + c   b)	etan x + c  c)	esin x + c  d)	ecos x + c
13. - ∫ecot -1x/1+ x2 dx =
a)	esec x + c  b)	etan x + c  c)	ecot -1x + c  d)	etan -1x + c
14.	ln a ∫ axdx =
a)	ax / ln a + c    b)	lna/ax + c   c)1/axln a + c  d) ax + c
15. 	∫ a f(x) f' (x)dx =
a)	1/af(x).ln a  b) ln a/af(x) + c  c) af(x)/ln a + c  d)	a f(x).ln a + c
16.	ln a∫asin x cos xdx
a) asinx/ln a + c  b)	ln a/ asin x + c  c)	asin x ln a + c 	d) asin x + c
17. ∫-1/√(1 - x2) dx =
a)  tan-1 x + c 	b) cot-1 x + c 	c) cos-1 x + c 	d) sin-1 x + c
 
18. ∫1/x√(x2 - 1) dx =
a)	tan-1 x + c  	b) cosec-1x + c  c) sec-1 x + c 	d) sin-1 x + c
19. ∫ tan xdx =
a)	ln secx + c  b)	ln cosecx + c 	c)	ln sinx + c 	d)	ln cotx + c
20. ∫1/ax + b .dx =
a)	1/a.ln(ax + b) + c  b)	1/b.ln(ax + b) + c  c)	1/ab .ln(ax + b) + c  d)	1/x ln(ax + b) + c
21. ∫dx/√(a2 - x2) =
a)	cos-1 ( x/a ) + c 	b) sin-1 ( a/x ) + c 	c) sin-1 ( x/a ) + c 	d) sin-1 x + c
22. ∫dx/√(a2 + x2) =
a) sinh-1 ( x ) + c 	b) cosh-1 ( x/a ) + c  c)	sin-1 ( x/a ) + c  d)	sin-1 x + c
23. ∫dx/ 9 - x2
a)	1/6 ln x - 3/x + 3 + c   b)	1/6 ln (3 + x)/(3 -x) + c  c)	1/9 tan-1 ( x ) + c  d)	1/3 tan-1 ( x ) + c
24. ∫cos ecxdx =
a)	ln(secx + tanx) + c 	b)	ln(cosecx + cotx) + c  c)	ln(secx - tanx) + c 	d)	-ln(cosecx - cotx) + c
25.∫ x2/a2 + x2 dx =
a)	a tan-1 ( x/1 ) + c  b)	x - a tan-1 ( x/a) + c  c)	1/a - tan-1 ( x/a) + c  d)	lan(a2 + x2 ) + c
26. ∫cos xdx/sin x ln sin x =
a)	ln ln cosx +c 	b)	ln ln sinx +c 	c)	ln sinx +c 	d)	ln cosx +c
27. ∫sec2 xdx/tan x ln tan x =
a)	ln ln cosx +c	b)	ln ln sinx +c	c)	ln ln tanx + c  d)	ln ln cotx +c
28. ∫	-dx /((1+ x2 ) tan-1 x ln tan-1 x) =
 
a)	ln ln tanx + c   b)	ln ln secx +c	c)	ln ln cot-1x + c d) ln ln tan-1x +c
29. ∫eax [af (x) + f' (x)]dx =
a)	ex f' (x) + c 	b) ex f (x) + c 	c) f (x) + f' (x) + c 	d) aex f (x) + c
30.	∫ex [acosec-1x -1/(x(√x2 -1))	]dx =
a)	excosec-1x + c 	b) ex sec-1x + c 	c) ex tan-1 x + c  d)	ex cos-1 x + c
31.	∫ex [a sec-1x + 1/(x(√x2 -1))	]dx =
a) ex sec-1 x + c  b) eax sec-1x + c  c) eax tan-1 x + c  d)ex tan-1 x + c
32. ≠∫eax [a cot-1x - 1/(1+ x2)	]dx =
a)	aeax cot-1 x + c  b)	eax sec-1 x + c 	c) eax tan-1 x + c 	d) eax cot-1 x + c
33. ∫sin xdx =
a)	0  	b)	6  	c)	8  	d)	16
34. 1∫4 ex ( 1/x - 1/x2 ) dx =
a) e4/4 +e  b) e - e4/4 	c) e4/4 - e  d)	e4 - e
 
35.	If f(x) = cosx, then Π/2∫Π/2 f (x)dx - f'(Π/2) =
a)	-1 	b)	0 	c)	2 	d)	3
36. 2 0∫Π/2 sec2 xdx =
a)	2  	b)	1  	c)	0  	d)	-1
37. 2 0∫Π/2 sec xtan xdx =
a)	4√2 - 4 	b)3√2	-3  c)	2√2 - 2 	d) √2 -1
38. 0∫1dx/1+ x2
a) Π/6  b) Π/4  c) Π/3  d) Π/2
39. 0∫1dx/√(1 - x2)
a) Π/6  b) Π/4  c) Π/3  d) Π/2
40.	If d/dx  (x√x+1 =  3x + 2/2√(x+1), then 0∫8 3x + 2/2√(x+1)  dx =
a)	48 	b)	36 	c)	24 	d)	18
41.	If 0∫1 (4x + K )dx = 2, then k =
a)	-1 	b)	0 	c)	1 	d)	2
42. Π/4∫Π/4 cosec2 xdx =
a)	2 	b)	1 	c)	-1 	d)	-2
43. 0∫Π/4 sin 2xdx =
a)	1  	b)	√3/2  c)	1/2 	d) √3
ANALYTIC GEOMETRY 
1.	The distance between two pints A(x1, y1) and B(x2, y2) is
a) (x2 - x1 )2 + ( y2 - y1)2  	b)√((x2 -x1) + (y2 - y1))  c) √((x1 - y1)2 + (x2 - y2)2) 	d) √((x2 -x1)2 + (y2 - y1)2)
2.	The distance of the point (1,2) from x-axis is
a)	-2 	b)	-1 c) 1  d) 2
3.	The distance of the point (-1,2) from x-axis is
a)	-2 	b)	-1  c) 1  d) 2
4.	If d1 is the distance between points(0,0), (1,2) and d2 is the distance between points (1,2), (2,1), then d12 + d22
a)	1 	b)	3 	c)	5 	d)	7
5.	If the distance of the point (5,b) from x-axis is3, then b =
a)	7	b)	5	c)	3	d)	1
6.	If the distance between the points (a,5) and (1,3) is √(2a + 1), then a =
a)	4 	b)	2 	c)√2  d)	1
7. 	The point P dividing internally the line joining  the points A(x1, y1)  and B (x2, y2) in the ratio AP: PB = k1: k2 has  coordinates
a) ( (k1x1 + k2 x2)/(k1 + k2), (k1 y1 + k2 y2)/(k1 + k2) )	b) ( (k1x1 - k2 x2)/(k1 - k2)  , (k1 y1 - k2 y2)/(k1 - k2) )
c) ( (k1x2 + k2 x1)/(k1 + k2), (k1 y2 + k2 y1)/(k1 + k2)	d) ( (k1x2 - k2 x1)/(k1 - k2)  , (k1 y2 - k2 y1)/(k1 - k2) )
8.  	The point P dividing externally the line joining the points A(x1, y1)   and B (x2, y2) in the ratio AP: PB = k1: k2 has coordinates
a) ( (k1x1 + k2 x2)/(k1 + k2), (k1 y1 + k2 y2)/(k1 + k2) )	b) ( (k1x1 - k2 x2)/(k1 - k2)  , (k1 y1 - k2 y2)/(k1 - k2) )
c) ( (k1x2 + k2 x1)/(k1 + k2), (k1 y2 + k2 y1)/(k1 + k2)	d) ( (k1x2 - k2 x1)/(k1 - k2)  , (k1 y2 - k2 y1)/(k1 - k2) )
9.	The midpoint of the line segment joining the points (4, -1) and (2,7) is
a)	(0, 0) 	b)	(1, 1) 	c)	(2, 2) 	d)	(3, 3)
10.	If (3,5) is the midpoint of (5,a) and (b,7) then
a)	a =1, b =1 	b)	a =-4, b = -3 	c)	a =-3, b = 1 	d)	a = -2, b = - 5
11.	If a rod of length l sides down against a wall and ground, the locus of middle point of the rod is
a)	a straight line 	b)	a circle 	c)	a parabola 	d)	an ellipse
12.	The point which divides segment joining points (4, -2) and (8, 6) in the ration 7:5 externally is
a) ( 19/3 , 8/3 )  b) ( 8/3 , 19/3 )  c) ( - 8/3, - 19/3 )  d)	(18, 26)
 
13.	The point of concurrency of the medians of a triangle is called its
a)	in-centre 	b)	centroid 	c)	circumcentre 	d)	orthocenter
14.	The point of concurrency of the angle bisectors of a triangle is called its
a)	in-centre 	b)	centroid 	c)	circumcentre 	d)	orthocenter
15.	if A(x1, y1), B (x2, y2), C (x3, y3) are the vertices of the triangle then its centroid is
a) ( (x1 + x2 + x3)/4, (y1 + y2 + y3)/4 	b) ((x1 + x2 + x3)/2, (y1 + y2 + y3)/2 )
c) (( x1 + x2 + x3)/3  , (y1 + y2 + y3)/3 )  d)	(x1 + x2 + x3, y1 + y2 + y3 )
16.	The slop of the line through the points (3, -2), (5, 11) is
a)	0 	b)	1 	c)	2 	d)	3
17.	The slop of the line through the points (a, 2), (3, b) is
 
a)	1/(b - a)  b)	(a - 3)/(2 - b)  c)	(2 - b)/(a - 3)  d) b - a
18.  	If m1 is the slop of the line through the points (-2, 4), (5,11) and  m2 is the slop of line through the points (3, -2), (2,7), then
 
a)	m1 + m2 + 8 = 0  b)	m1 + m2 - 8 = 0  c)	m1 - m2 + 8 = 0  d) m1 - m2 - 8 = 0
19.	If a straight line is parallel to x-axis, then its slop is
a)	-1 	b)	0 	c)	1 	d)	undefined
20.	If a is some fixed number, then the line y = a is
a)	along y-axis 	b)	parallel to y-axis 	c)  parallel to y-axis 	d) perpendicular to y- axis
21.	The line l1, l2 with slopes m1, m2 are perpendicular if
a)	m1m2 = -1 	b) m1 = m2  c)	m1 + m2 = 0  d)	m1m2 = 1
22.	If - 1/2 is the slop of line l1 and l1 l2, then the slop of the line l2 is
 
a)	2 	b)	0 	c)	-1 	d)	-2
23.	Three points (x1, y1), (x2, y2), (x3, y3) are collinear if
a)	x1 	y1 	1	                   	b)	x1  y1 	1	
    x2 	y2 	1 ≠	0                  	x2 	y2 	1	= 0
    x3 	y3 	1                         x3 	y3 	1
c) x1 	y2 	1                   		d)	none of these
    x2 	y1 	1	=	0
    x3 	y3 	1
24.	The equation of line through (-2, 5) with slop -1 is
a)	2x - y +1 = 0 	b)	x + y - 3 = 0 	c)	x + y + 3 = 0 	d)	x - y - 3 = 0
25.	Normal form of equation of line is
a)	x sina + ycosa = p 	b)	x sina - ycosa = p 	c) x cosa - ysina = p  d) xcosa + ysina
26.	In the normal form of equation of line xcosa + ysina = p, p is the length of perpendicular from
a)	origin to line   b)	(1,1) to the line 	c)	(2,2) to the line 	d)	(3,3) to the line
27.	If b = 0, then the line ax + by +c = 0 is parallel to
a)	y-axis 	b)	x-axis 	c)	along x-axis 	d)	none of these
28.	If the lines a1x +b1y + c1 = 0 and a2x + b2y + c2 = 0 are perpendicular, then
 
a)	a1a2 - b1b2 = 0  b)	a1a2 + b1b2 = 0  c)	a1b2 - a2b1 = 0 	d) a1b2 + a2b1 = 0
29. 	2x2 + 3xy - 5y2 = 0 If the lines a1x + b1 y + c1 = 0 and a2 x + b2 y + c2 = 0 are parallel, then
a)	a1a2 - b1b2 = 0  b)	a1a2 + b1b2 = 0  c)	a1b2 - a2b1 = 0	d) a1b2 + a2b1 = 0
30.	Altitudes of a triangle are
a)	parallel 	b)	perpendicular 	c)	concurrent 	d)	non- concurrent
31.	The right bisectors of a triangle are
a)	parallel 	b)	perpendicular 	c)	concurrent 	d)	non- concurrent
32.	The area of a triangle region with vertices A(x1, y1), B (x2, y2) , C (x3, y3) is
a)		x1 	x2 	x3                           	b)	x1 	x2 	x3
 2 	y1 	y2 	y3                               	y1 	y2 	y3
    1  	1  	1                                     1  	1  	1
c)		x1 x2 x3                                 	x1 	x2 	x3
 1/2 	y1 y2 y3                        1/4 y1 	y2 	y3  
    1  	1   	1                                  	1  	1 	1
33.	If θ is the angle between the lines represented by the homogeneous second degree equation ax2 + 2hxy + by2 = 0, then
a)	tanθ = 2√(h2 +ab)/(a +b)  b)	tanθ = 2√(h2 - ab)/(a + b)  c)	tanθ = (a + b)/2√(h2 + ab)  d)	tanθ =  (a + b)/2√(h2 - ab)
34.	If the lines kx - 4y - 13 = 0, 8x - 11y - 33 = 0 and 2x - 3y - 7 = 0 are concurrent, then k =
a)	3 	b)	0 	c)	- 1 	d)	- 2
35.	The angle between the lines x/a + y/b = 1 and x/a - y/b = 1 is
a)	tan -1(( a2 - b2 )/2ab)  b)	tan-1 (2ab/(a2 + b2)) c)	tan-1 (2ab)/(a2 - b2)  d)	0
36.	The angle between the lines y = (2 -	√3 ) x + 5 and y = (2 +	√3 ) x - 7 is
a)	30° 	b)	45° 	c)	60° 	d)	90°
37.	The angle between the lines	√3 x + y = 1 and	√3 x - y = 1 is
a)	90° 	b)	60° 	c)	30° 	d)	- 60°
38.	The perpendicular distance of a line 12x + 5y = 7 from the origin is
a)	1/13   b)	13/7  c)	7/13  d)	13
39.	The lines 2x + 3ay - 1 = 0 and 3x + 4y +1 = 0 are perpendicular, then a =
 
a) - 1/2  b) - 1/4  c)	1/2  d)	1
40.	The angle between lines 3x + y - 7 = 0 and x + 2y + 9 = 0 is
a)	135° 	b)	90° 	c)	60° 	d)	30°
41.	The angle between pair of lines represented by x2 + 2xy - y2 = 0 is
a) Π/6  b) Π/3  c) Π/2  d) Π
42.	Distance between the line x + 2y - 5 = 0 and 2x + 4y = 1 is
a)	9/2√5   b) 2√5/9  c)	5/4  d)	0
43.	2x2 + 3xy - 5y2 = 0 represents the lines
a)	x + y = 0 , 2x  - 5y = 0     	b)	x - y = 0 , 2x + 5y = 0
c)	3x - 2 y = 0 , 5x  - 3y = 0 	d)	3x + 2 y = 0 , 5x + 3y = 0