Problems related to functions and limits differentiation


FUNCTIONS AND LIMITS

1. A rule that assigns to each element x in X a unique element y in Y is called a function from

a) X to X   b) X to Y   c) Y to Y

2. If f : X → Y is a function, then the elements of X are called

a) pre-images   b) images   c) constantans   d) ranges

3. If f : X → Y is a function and x∈X, then

a) f (x) = 1   b) f(x) ∈Y   c) f (x) ∈ X   d) f(x) ∉Y

4. If f: X → f(X) is a function, then the elements of f(X) are called

a) pre-images b) images c) constantans d) ranges

5. If f : x → (3x - 5)/(x + 3) is a function, then f (0) =

a) 5   b) 3   c) - 3/5  d) - 5/3

6. If f : x → (2x2 + 5x -1)/(x + 3) is a function, then f(o) =

a) - 1/3  b) - 1/4  c) - 1/5  d) 0

7. If f : x → x2 - 2x +1 is a function, then f (t + 1) =

a) t + 1    b) t2 + 1   c) t - 1   d) t2 - 1

8. If f : X → Y is a function, then domain of f is

a) Y   b) X   c) - X   d) - Y

9. If f : X → Y is a function, then the subset of Y containing all images is called the

a) domain of f   b) range of f   c) subset of X   d) Superset of X

10. If f : X → Y is a function, then x∈X is called the

a) Dependent variable of f   b) independent variable of f  c) Value of f   d) range of f

11. f (x) = x2 - 4x + 1 is

a) trigonometric function   b) logarithmic function  c) exponential function   d) algebraic function

12. f (x) = log x is

a) trigonometric function   b) logarithmic function  c) exponential function   d) algebraic function

13. f (x) = ex is

a) trigonometric function   b) logarithmic function  c) exponential function   d) algebraic function

14. f (x) = ax + b, a ≠ 0 is

a) trigonometric function   b) cubic function  c) quadratic function   d) linear function

15. The graph of a linear function is

a) parabola   b) ellipse   c) hyperbola   d) straight line

16. A function f : X → X defined by f(x) = x, ∀ x∈ X is called the [1/2 f-1 (x)]

a) trigonometric function   b) cubic function  c) quadratic function   d) identity function

17. The linear function f (x) = ax +b is an identity function if

a) a = 0, b =1   b) a = 1, b =0   c) a = 1, b =1   d) a = 0, b =0

18. If K is a constant, then the function f : x → k is

a) constant function   b) cubic function  c) quadratic function   d) identity function

19. sinh x =

a) (ex + e- x)/2  b) (ex - e- x)/2  c) (ex - e- x)/(ex + e- x)  d) (ex + e- x)/(ex - e- x)

20. tanh x =

a) (ex + e- x) 2  b) (ex - e- x)/2  c) (ex - e- x)/(ex + e- x)  d) (ex + e- x)/(ex - e- x)

21. cosh 2 x - sinh 2 x =

a) - 2   b) -1   c) 1   d) 2

22. sinh -1 x =

a) In(x + √(x2+1))  b) In(x + √(x2 - 1))  c) 1/2 In ( 1+ x )/(1- x)  d) 1/2 In ( x +1 )/(x -1)

23. Equations x = 3cos t and y = 3 sin t represent the equation of

a) line   b) circle   c) parabola   d) hyperbola

24. If f(-x) = f(x) for every number x in the domain of f, then f is

a) linear function   b) periodic function  c) odd function   d) even function

25. If f(-x) = -f(x) for every number x in the domain of f, then f is

a) linear function   b) periodic function  c) odd function  d) even function

26. f (x) = cos x is

a) linear function   b) quadratic function  c) odd function  d) even function

27. f (x) = x cotx is

a) linear function   b) quadratic function  c) odd function  d) even function

28. if f (x) = x4 - 4x2 + 4, then f (√(x +1))=

a) x -1   b) (x-1)2   c) x2 - 1   d) x2 + 1

29. If f(x) = √(Cos(2Π sin x)) , then f ( Π/2 ) =

a) - 1   b) 0   c) 1   d) √2

30. If f(x) = √(2cos(2Πsinx)), then f ( Π/2 ) =

a) - 1   b) 0   c) 1   d) √2

31. If f(x) = √(x+4), then f (x2 + 4) =

a) x2 - 8   b)√(x2 - 8)  c) √(x2 + 8)  d) x2 + 8

32. If f(x) = x3 + 2x2 - 1, then (f (a + h) - f (a))/h

a) 0   b) 1   c) h2 +a2   d) h2+(3a+2)h+3a2+4a

33. If f(x) = x3 + 2x2 - 1, then (f (1+ h) - f (1))/h

a) h   b) h2- 5h + 7   c) h2 + 5h + 7   d) h2 + 5h - 7

34. If P is the perimeter of a square and A is its area, then P=

a) √A   b) 2√A  c) 3√A  d) 4√A

35. If A is the area of the circle and C is its circumference C, then C =

a) 8√(ΠA)  b) 4√(ΠA)  c) 2√(ΠA)  d) √(ΠA)

36. The volume of a cube of side length 2 is

a) 2 cubic units   b) 4 cubic units  c) 8 cubic units  d) 16 cubic units

37. If f(x) = √(x2 - 4) , then domain of f is

a) (-∞, -2] ∪ [2, ∞)  b) (-∞, ∞)  c) [-2, 2]  d) [-3, 3]

38. if f (x) = |x|, then range of f is

a) (-∞, 0]  b) [0, ∞)  c) (-∞, ∞)  d) none of these

39. x = a secθ, y = b tanθ are perimeter equations of

a) circle   b) parabola   c) ellipse   d) hyperbola

40. If f(x) = x - 2 and f(x) = √(x2 + 1), then (f o g) (x) =

a)√(x2 +1) - 2 b) √(x2 - 4x + 5)  c) x2 - 1 d) x2 - 4x + 5

41. If f(x) = (2x +1)/(x -1) , then f-1 (x)

a) x -1/2x +1  b) x - 2/x +1  c) x +1/x - 2  d) 2x - 6/

42. f : x → √(3x2 -1) and g : x → sin x , then f o g : x →

a) sin(3x2 - 1)  b) sin√(3x2 - 1)  c) √(3sinx2 -1)  d) √(3x2 - 1sinx)

43. lim    (x3 - x)/(x +1) =
    x→-1

a) 5  b) 3  c) 2  d) 0

44. lim   (2x2 - 32)/(3 + 4x2 ) =
     x→4

a) 5  b) 3  c) 2  d) 0

45. lim  (x - 2)/(√x - √2) =
     x→2

a)√2  b) 2  c) 2√2  d) 0

46. lim   (tanx)/x =
     x→0

a) 0  b) 1  c) 2  d) 6

47. lim   (sin6x)/x =
     x→0

a) 0   b) 1  c) 2  d) 6

48. lim   sin x0/x =
     x→0

a) Π/180   b) 180/Π  c) 180Π  d) 1

49. lim   (sin ax)/(sin bx) =
     x→0

a) 1/ab  b) b/a  c) a/b  d) 1

50. lim   x2/(sin axsin bx) =
     x→0

a) 2/3  b) 3/2  c) 1/6  d) 1

51. lim  (1 + 1/x)x =
     x→∞

a) 2/3  b) 3/2  c) 1/6  d) 1

52. lim  (x/(1 + x))x =
     x→0

a) e-1   b) e1/2   c) e2   d) e3

53. lim = (√(1+sinx - √(1 - sinx))/x =
     x→0

a) -1   b) 0  c) 1  d) 2

DIFFERENTIATION

1. lim    f (x + δ x) - f (x)/δx =
  δx→0

a) f'(x)  b) f'(a)  c) f'(2)  d) f'(0)

2. d/dx (axm + bxn ) =

a) axm-1 + bxn-1  b) amxm-1 + bnxn-1  c) xm-1 + xn-1  d) mxm-1 + nxn-1

3. f (x) = 1/x -1 ⇒ f'(2) =

a) 1  b) 0  c) - 1  d) - 2

4. d/dx [ f (x) sin x] =

a) f' (x) sin x + f(x) cos x  b) f' (x) sin x - f(x) cos x  c) f' (x) cos x + f(x) sin x  d) f' (x) cos x

5. d/dx (- cosec x) =

a) -cosecx cotx  b) cosecx cotx c) - sin x  d) sec x tan x

6. d/dx (cosec-1x)

a) 1/x√(x2 -1)  b) - 1/x√(x2 -1)  c) 1/1+ x2 d) cot-1 x

7. 3x + 4y + 7 = 0 ⇒ dy/dx =

a) 3/4  b) - 3/4 c) - 4/3  d) 0

8. (1+ x2) d/dx (tan-1 x - cot-1 x) =

a) -1  b) 0  c) 1  d) 2

9. If f(x) = √(x + 1), then d/dx ((1/2 f-1 (x))  =

a) 0   b) x   c) 2x  d) 3x

10. 1/x d/dx (sin x2 ) =

a) 2xcosx2 b) cosx2 c) 2xcos2x d) 2cosx2 1/3

11. 1/3x2 d/dx (t in x3 ) =

a) sec2x3  b) 3x2 sec2 x3  c) sec2 x  d) 3sec2 x

12. 2√tan x d/dx √tan x =

a) 1/√tan x.sec2x  b) 0  c) sec2 x  d) √tan x

13. if f(x) = tanx, then f' (x) cos2 x =

a) sec2 x  b) sec x  c) 0  d) 1

14. If f(x) = √(x +1), then d/dx (1/2 f -1 (x) )

a)  0  b) x  c) 2x  d) 3x

15. 1/3x2 d/dx (tan x2 ) =

a) sec2 xb) 3x2 sec2 x3  c) sec2 x  d) 3sec2 x

16. If f(x) = tanx, then f' (x) cos2x =

a) sec2 x  b) sec x  c) 0  d) 1

17. d/dx tan-1 (sin 2x/1 + cos x ) =

a) 0  b) 2  c) 1  d) 0

18.  d/dx cot-1 ((1+ cos x)/sin2x) =

a) 3  b) 2  c) 1  d) 0

19.  d/dx [tan-1 √(1- cos x)/√(1+ cos x) ] =

a) 1  b) 1/2  c) 0  d) -1

d [ ( -1 cot2 x +1 )]

20. d/dx [tan (sec-1(√(cot2x + 1)/cot2x)] =

21. d/dx (ax) =

a) - cosec2 x  b) sec2 x  c) sec x  d) sec x tan x

22. d/dx(5x - 2x) =

a) 5xln5- 2x ln2   b) 5x ln5 + 2x ln 2 c) 5x + 2d) 5x - 2x

23. d/dx (cosh 3x) =

a) 3cosech3x  b) -3 sinh 3x  c) 3 sinh 3x  d) 3 coth 3x

24. d/dx (coth x) =

a) sec h2 x  b) -sec h2 x  c) coth x d) cosechx

25. d/dx (cosech x) =

a) - cosechxcothx  b) cosechxcothx  c) sechx tanh x  d) - sechx tanhx

26. d/dx (coth-1 x) =

a) 1/(1- x2) b) 1/(1+ x2)  c) -1/(1- x2)  d) -1/(1+ x2)

27. If f (x) = sinx, then f' (cos-1 3x) =

a) cos x  b) - 3/√(1 - 9x2)  c) 3/√(1- 9x2)  d) 3x

28. If f (x) = tan-1x, then f' (tan x) =

a) 1/(1+ x2) b) sin2 x  c) cos2 x  d) sec2 x

29. d/dx [e f(x) ] =

a) e f( x)  b) e(x)  c) ef(x)/f'(x)  d) ef(x)f'(x)

30. d/dx [10sin x ] =

a) 10cos x  b) 10sin x cos x ln10  c) 10sin x ln10  d) 10cos x ln10

31. If y = sin3x, then y4 =

a) 3sin 3x  b) 9sin3x  c) 27sin 3x  d) 81 sin 3x

32. If f= ex, then y4 =

a) 0  b) ex  c) 2ex  d) 4ex

33. If f (x) = sinx, then f (sin-1 x) =

a) 1/√(1-x2)  b) cos x  c) - sin x  d) -x

34. ln (1 - x ) =

a) x- x3/3! + x5/5! - x7/7! +......  b) 1 - x2/2! + x4/4! - x6/6! +......  c) - x - x2/2 - x3/3 - x4/4  d) x - x2/2 + x3/3 - x4/4 + ......

35. cos x

a) x- x3/3! + x5/5! - x7/7! +......  b) 1 - x2/2! + x4/4! - x6/6! +......  c) - x - x2/2 - x3/3 - x4/4  d) x - x2/2 + x3/3 - x4/4 + ......

36. ex

a) x + x2/2 + x3/3 + x4/4 +......  b) 1 - x2/2! + x4/4! - x6/6! +......  c) 1 + x + x2/2! + x3/3! +....  d) 1 - x + x2/2! - x3/3!

37. If f (x) = x3 = cos x , then f' (x) =
                    7   = 4

a) 3x2 - sinx   b) 3x2 - sinx  c) 3x2 - sinx  d) 0
     0       4            0       0          7        4

38. The function f (x) = x3 is

a) increasing for x>0  b) decreasing for x < 0  c) decreasing for x > 0  d) constant x > 0

39. The minimum value of the function f (x) = 5x2 - 6x + 2 is

a) 1/5  b) 1/4  c) 1/3  d) 0

INTEGRATION

1. The integration is the reverse process of

a) tabulation  b) sublimation  c) classification  d) differentiation

2. ∫d/dx xn dx =

a) xn+1/n + c  b) xn-1/n -1 + c  c) xn+1/n +1 + c  d) xn + c

3. ∫cos ecxdx = ∫- cosec2 xdx

a) cosx + c  b) -cosx + c  c) tanx + c  d) cotx + c

4. ∫ -3cos ec23xdx =

a) -cot3x + c  b) -cos3x + c  c) tan3x + c  d) cot3x + c

5. ∫(n +1)[x2 + 2x -1]n (2x + 2)dx =

a) (x2 + 2x -1)n+1 + c  b) (x2 + 2x -1)n +1  c) (x2 + 2x -1)n-1  d) n(x2 + 2x -1)n-1

6. ∫ (x -1)/(x2 - 2x +1)dx  =

a) 1/2 ln(x2 - 2x +1) + c  b) 1/4ln(x2 - 2x +1) + c  c) ln(x2 - 2x +1) + c  d) ln(2x - 2) + c

7. ∫ cosec2 x/ cot x dx =

a) ln tanx + c  b) ln cotx + c  c) 2 ln cotx + c  d) 2 ln tanx + c

8. ∫ sec2 x/tan x + ∫cosec2 x/cot x dx =

a) ln tanx + c  b) ln cotx + c  c) 2 ln cotx + c  d) 2 ln tanx + c

9. ∫(1/x - cosec2x/cot x)dx =

a) ln(x sinx) + c  b) ln(x sinx2x) + c  c) ln (x tanx) + c  d) ln (x cot x) + c

10. ∫ ( 1/x - sin 2x/tan x ) dx =

a) ln (x sinx) + c  b) ln (x sinx2x ) + c  c) ln ( x tanx )+ c  d) ln (x cot x) + c

11. ∫ ( ex + sin 2x/( sin2 x ) dx =

a) ln(ex sin2 x) + c  b) ln(x sin2 x) + c  c) ln(x cos2 x) + c  d) ln(ex cos2 x) + c

12. ∫ etan x sec2 xdx =

a) -ecot x + c   b) etan x + c  c) esin x + c  d) ecos x + c

13. - ∫ecot -1x/1+ x2 dx =

a) esec x + c  b) etan x + c  c) ecot -1x + c  d) etan -1x + c

14. ln a ∫ axdx =

a) ax / ln a + c    b) lna/ax + c   c)1/axln a + c  d) ax + c

15.  ∫ a f(x) f' (x)dx =

a) 1/af(x).ln a  b) ln a/af(x) + c  c) af(x)/ln a + c  d) a f(x).ln a + c

16. ln a∫asin x cos xdx

a) asinx/ln a + c  b) ln a/ asin x + c  c) asin x ln a + c  d) asin x + c

17. ∫-1/√(1 - x2) dx =

a)  tan-1 x + c  b) cot-1 x + c  c) cos-1 x + c  d) sin-1 x + c

18. ∫1/x√(x2 - 1) dx =

a) tan-1 x + c   b) cosec-1x + c  c) sec-1 x + c  d) sin-1 x + c

19. ∫ tan xdx =

a) ln secx + c  b) ln cosecx + c  c) ln sinx + c  d) ln cotx + c

20. ∫1/ax + b .dx =

a) 1/a.ln(ax + b) + c  b) 1/b.ln(ax + b) + c  c) 1/ab .ln(ax + b) + c  d) 1/x ln(ax + b) + c

21. ∫dx/√(a2 - x2) =

a) cos-1 ( x/a ) + c  b) sin-1 ( a/x ) + c  c) sin-1 ( x/a ) + c  d) sin-1 x + c

22. ∫dx/√(a2 + x2) =

a) sinh-1 ( x ) + c  b) cosh-1 ( x/a ) + c  c) sin-1 ( x/a ) + c  d) sin-1 x + c

23. ∫dx/ 9 - x2

a) 1/6 ln x - 3/x + 3 + c   b) 1/6 ln (3 + x)/(3 -x) + c  c) 1/9 tan-1 ( x ) + c  d) 1/3 tan-1 ( x ) + c

24. ∫cos ecxdx =

a) ln(secx + tanx) + c  b) ln(cosecx + cotx) + c  c) ln(secx - tanx) + c  d) -ln(cosecx - cotx) + c

25.∫ x2/a2 + x2 dx =

a) a tan-1 ( x/1 ) + c  b) x - a tan-1 ( x/a) + c  c) 1/a - tan-1 ( x/a) + c  d) lan(a2 + x2 ) + c

26. ∫cos xdx/sin x ln sin x =

a) ln ln cosx +c  b) ln ln sinx +c  c) ln sinx +c  d) ln cosx +c

27. ∫sec2 xdx/tan x ln tan x =

a) ln ln cosx +c b) ln ln sinx +c c) ln ln tanx + c d) ln ln cotx +c

28. ∫ -dx /((1+ x2 ) tan-1 x ln tan-1 x) =

a) ln ln tanx + c b) ln ln secx +c c) ln ln cot-1x + c d) ln ln tan-1x +c

29. ∫eax [af (x) + f' (x)]dx =

a) ex f' (x) + c  b) ex f (x) + c  c) f (x) + f' (x) + c  d) aex f (x) + c

30. ∫ex [acosec-1x -1/(x(√x2 -1)) ]dx =

a) excosec-1x + c  b) ex sec-1x + c  c) ex tan-1 x + c  d) ex cos-1 x + c

31. ∫ex [a sec-1x + 1/(x(√x2 -1)) ]dx =

a) ex sec-1 x + c  b) eax sec-1x + c  c) eax tan-1 x + c  d)ex tan-1 x + c

32. ≠∫eax [a cot-1x - 1/(1+ x2) ]dx =

a) aeax cot-1 x + c  b) eax sec-1 x + c  c) eax tan-1 x + c  d) eax cot-1 x + c

33. ∫sin xdx =

a) 0   b) 6   c) 8   d) 16

34. 14 ex ( 1/x - 1/x2 ) dx =

a) e4/4 +e  b) e - e4/4  c) e4/4 - e  d) e4 - e

35. If f(x) = cosx, then Π/2Π/2 f (x)dx - f'(Π/2) =

a) -1  b) 0  c) 2  d) 3

36. 2 0Π/2 sec2 xdx =

a) 2   b) 1   c) 0   d) -1

37. 2 0Π/2 sec xtan xdx =

a) 4√2 - 4  b)3√2 -3  c) 2√2 - 2  d) √2 -1

38. 01dx/1+ x2

a) Π/6  b) Π/4  c) Π/3  d) Π/2

39. 01dx/√(1 - x2)

a) Π/6  b) Π/4  c) Π/3  d) Π/2

40. If d/dx (x√x+1 = 3x + 2/2√(x+1), then 08 3x + 2/2√(x+1) dx =

a) 48  b) 36  c) 24  d) 18

41. If 01 (4x + K )dx = 2, then k =

a) -1  b) 0  c) 1  d) 2

42. Π/4Π/4 cosec2 xdx =

a) 2  b) 1  c) -1  d) -2

43. 0Π/4 sin 2xdx =

a) 1   b) √3/2  c) 1/2  d) √3

ANALYTIC GEOMETRY

1. The distance between two pints A(x1, y1) and B(x2, y2) is

a) (x2 - x1 )2 + ( y2 - y1)2   b)√((x2 -x1) + (y2 - y1))  c) √((x1 - y1)2 + (x2 - y2)2)  d) √((x2 -x1)2 + (y2 - y1)2)

2. The distance of the point (1,2) from x-axis is

a) -2  b) -1 c) 1  d) 2

3. The distance of the point (-1,2) from x-axis is

a) -2  b) -1  c) 1  d) 2

4. If d1 is the distance between points(0,0), (1,2) and d2 is the distance between points (1,2), (2,1), then d12 + d22

a) 1  b) 3  c) 5  d) 7

5. If the distance of the point (5,b) from x-axis is3, then b =

a) 7 b) 5 c) 3 d) 1

6. If the distance between the points (a,5) and (1,3) is √(2a + 1), then a =

a) 4  b) 2  c)√2  d) 1

7. The point P dividing internally the line joining the points A(x1, y1) and B (x2, y2) in the ratio AP: PB = k1: k2 has coordinates

a) ( (k1x1 + k2 x2)/(k1 + k2), (k1 y1 + k2 y2)/(k1 + k2) ) b) ( (k1x1 - k2 x2)/(k1 - k2) , (k1 y1 - k2 y2)/(k1 - k2) )

c) ( (k1x2 + k2 x1)/(k1 + k2), (k1 y2 + k2 y1)/(k1 + k2) d) ( (k1x2 - k2 x1)/(k1 - k2) , (k1 y2 - k2 y1)/(k1 - k2) )

8. The point P dividing externally the line joining the points A(x1, y1) and B (x2, y2) in the ratio AP: PB = k1: k2 has coordinates

a) ( (k1x1 + k2 x2)/(k1 + k2), (k1 y1 + k2 y2)/(k1 + k2) ) b) ( (k1x1 - k2 x2)/(k1 - k2) , (k1 y1 - k2 y2)/(k1 - k2) )

c) ( (k1x2 + k2 x1)/(k1 + k2), (k1 y2 + k2 y1)/(k1 + k2) d) ( (k1x2 - k2 x1)/(k1 - k2) , (k1 y2 - k2 y1)/(k1 - k2) )

9. The midpoint of the line segment joining the points (4, -1) and (2,7) is

a) (0, 0)  b) (1, 1)  c) (2, 2)  d) (3, 3)

10. If (3,5) is the midpoint of (5,a) and (b,7) then

a) a =1, b =1  b) a =-4, b = -3  c) a =-3, b = 1  d) a = -2, b = - 5

11. If a rod of length l sides down against a wall and ground, the locus of middle point of the rod is

a) a straight line  b) a circle  c) a parabola  d) an ellipse

12. The point which divides segment joining points (4, -2) and (8, 6) in the ration 7:5 externally is

a) ( 19/3 , 8/3 )  b) ( 8/3 , 19/3 )  c) ( - 8/3, - 19/3 )  d) (18, 26)

13. The point of concurrency of the medians of a triangle is called its

a) in-centre  b) centroid  c) circumcentre  d) orthocenter

14. The point of concurrency of the angle bisectors of a triangle is called its

a) in-centre  b) centroid  c) circumcentre  d) orthocenter

15. if A(x1, y1), B (x2, y2), C (x3, y3) are the vertices of the triangle then its centroid is

a) ( (x1 + x2 + x3)/4, (y1 + y2 + y3)/4  b) ((x1 + x2 + x3)/2, (y1 + y2 + y3)/2 )

c) (( x1 + x2 + x3)/3 , (y1 + y2 + y3)/3 )  d) (x1 + x2 + x3, y1 + y2 + y3 )

16. The slop of the line through the points (3, -2), (5, 11) is

a) 0  b) 1  c) 2  d) 3

17. The slop of the line through the points (a, 2), (3, b) is

a) 1/(b - a)  b) (a - 3)/(2 - b)  c) (2 - b)/(a - 3)  d) b - a

18. If m1 is the slop of the line through the points (-2, 4), (5,11) and m2 is the slop of line through the points (3, -2), (2,7), then

a) m1 + m2 + 8 = 0  b) m1 + m2 - 8 = 0  c) m1 - m2 + 8 = 0  d) m1 - m2 - 8 = 0

19. If a straight line is parallel to x-axis, then its slop is

a) -1  b) 0  c) 1  d) undefined

20. If a is some fixed number, then the line y = a is

a) along y-axis  b) parallel to y-axis  c) parallel to y-axis  d) perpendicular to y- axis

21. The line l1, l2 with slopes m1, m2 are perpendicular if

a) m1m2 = -1  b) m1 = m2  c) m1 + m2 = 0  d) m1m2 = 1

22. If - 1/2 is the slop of line l1 and l1 l2, then the slop of the line l2 is

a) 2  b) 0  c) -1  d) -2

23. Three points (x1, y1), (x2, y2), (x3, y3) are collinear if

a) x1  y1  1                     b) x y1  1
    x2  y2  1 ≠ 0                   x2  y2  1 = 0
    x3  y3  1                         x3  y3  1

c) x1  y2  1                    d) none of these
    x2  y1  1 = 0
    x3  y3  1

24. The equation of line through (-2, 5) with slop -1 is

a) 2x - y +1 = 0  b) x + y - 3 = 0  c) x + y + 3 = 0  d) x - y - 3 = 0

25. Normal form of equation of line is
a) x sina + ycosa = p  b) x sina - ycosa = p  c) x cosa - ysina = p  d) xcosa + ysina

26. In the normal form of equation of line xcosa + ysina = p, p is the length of perpendicular from

a) origin to line  b) (1,1) to the line  c) (2,2) to the line  d) (3,3) to the line

27. If b = 0, then the line ax + by +c = 0 is parallel to
a) y-axis  b) x-axis  c) along x-axis  d) none of these

28. If the lines a1x +b1y + c1 = 0 and a2x + b2y + c2 = 0 are perpendicular, then

a) a1a2 - b1b2 = 0  b) a1a2 + b1b2 = 0  c) a1b2 - a2b1 = 0  d) a1b2 + a2b1 = 0

29.  2x2 + 3xy - 5y2 = 0 If the lines a1x + b1 y + c1 = 0 and a2 x + b2 y + c2 = 0 are parallel, then

a) a1a2 - b1b2 = 0  b) a1a2 + b1b2 = 0  c) a1b2 - a2b1 = 0 d) a1b2 + a2b1 = 0

30. Altitudes of a triangle are

a) parallel  b) perpendicular  c) concurrent  d) non- concurrent

31. The right bisectors of a triangle are

a) parallel  b) perpendicular  c) concurrent  d) non- concurrent

32. The area of a triangle region with vertices A(x1, y1), B (x2, y2) , C (x3, y3) is

a) x1  x2  x3                            b) x1  x2  x3
2  y1  y2  y                               y1  y2  y3
    1   1   1                                     1   1   1

c) x1 x2 x                                 x1  x2  x3
1/2  y1 y2 y3                        1/4 y1  y2  y
   
1   1    1                                   1   1  1
33. If θ is the angle between the lines represented by the homogeneous second degree equation ax2 + 2hxy + by2 = 0, then

a) tanθ = 2√(h2 +ab)/(a +b)  b) tanθ = 2√(h2 - ab)/(a + b)  c) tanθ = (a + b)/2√(h2 + ab)  d) tanθ =  (a + b)/2√(h2 - ab)

34. If the lines kx - 4y - 13 = 0, 8x - 11y - 33 = 0 and 2x - 3y - 7 = 0 are concurrent, then k =

a) 3  b) 0  c) - 1  d) - 2

35. The angle between the lines x/a + y/b = 1 and x/a - y/b = 1 is

a) tan -1(( a2 - b2 )/2ab)  b) tan-1 (2ab/(a2 + b2)) c) tan-1 (2ab)/(a2 - b2)  d) 0

36. The angle between the lines y = (2 - √3 ) x + 5 and y = (2 + √3 ) x - 7 is

a) 30°  b) 45°  c) 60°  d) 90°

37. The angle between the lines √3 x + y = 1 and √3 x - y = 1 is

a) 90°  b) 60°  c) 30°  d) - 60°

38. The perpendicular distance of a line 12x + 5y = 7 from the origin is

a) 1/13   b) 13/7  c) 7/13  d) 13

39. The lines 2x + 3ay - 1 = 0 and 3x + 4y +1 = 0 are perpendicular, then a =

a) - 1/2  b) - 1/4  c) 1/2  d) 1

40. The angle between lines 3x + y - 7 = 0 and x + 2y + 9 = 0 is

a) 135°  b) 90°  c) 60°  d) 30°

41. The angle between pair of lines represented by x2 + 2xy - y2 = 0 is

a) Π/6  b) Π/3  c) Π/2  d) Π

42. Distance between the line x + 2y - 5 = 0 and 2x + 4y = 1 is

a) 9/2√5   b) 2√5/9  c) 5/4  d) 0

43. 2x2 + 3xy - 5y2 = 0 represents the lines

a) x + y = 0 , 2x - 5y = 0      b) x - y = 0 , 2x + 5y = 0
c) 3x - 2 y = 0 , 5x - 3y = 0  d) 3x + 2 y = 0 , 5x + 3y = 0

Request for Solution File

Ask an Expert for Answer!!
Mathematics: Problems related to functions and limits differentiation
Reference No:- TGS02459528

Expected delivery within 24 Hours