Problem:
Complex Matrix, Diagonal Matrix, Left and Right Eigenvectors and Eigenvalues
1. Let X-1 AX = D, where D is a diagonal matrix.
(a) Show that the columns of X are right eigenvectors and the conjugate rows of X-1 are left eigenvectors of A.
(b) Let λ1...,λn be the eigenvalues of A. Show that there are right eigenvectors x1,. . . , x and left eigenvectors y1, . . , yn such that
A = Σn i=1 λixiyi*