Probability Background
Prove that the mean E(x), the expectation E(x2) and the variance σ2x by using
a- PDF p(x), where
E(x) = -∞∫∞ x p(x) dx
E(x2) = -∞∫∞ x2 p(x) dx
-∞
σ2x = E(x2) - (E(x))2 .
b- Characteristics function, where
ψ(jv) = -∞∫∞ ejvx p(x) dx
E(x) = -j dψ(jv)/dv|v=0
E(x)2 = (-j)2d2ψ(jv)/dv2|v=0
σ2x = E(x2) - (E(x))2
for the following distributions:
1- Uniform Distribution
2- Chi-Square Distribution
3- Rayleigh Distribution
4- Rician distribution
Attachment:- Probability Background.rar