Discussion:
Q1. A study indicated where different age groups primarily get their news: At the 0.05 level of significance, is there evidence of a significant relationship between the age group and where people primarily get their news? If so, explain the relationship
Use the Chi Square file
Age Group
Media Under 36 36-50 50+
Local TV 107 119 133
National TV 73 102 127
Radio 75 97 109
Local newspaper 52 79 107
Internet 95 83 76
Q2. Create a pivot table of management level versus gender. Then copy the data from the table into a chi square table to see if a relationship exists between employee genders and their management level. What can you conclude at the .05 significance level?
Salary (dollars) |
Gender |
Age (years) |
Experience (years) |
Management Level |
Education Level |
41,711 |
F |
30 |
0 |
2 |
0 |
27,739 |
F |
26 |
1 |
1 |
0 |
67,977 |
M |
42 |
3 |
3 |
1 |
32,950 |
F |
38 |
6 |
1 |
0 |
72,899 |
F |
43 |
4 |
3 |
1 |
30,096 |
F |
32 |
4 |
1 |
0 |
42,513 |
F |
32 |
2 |
2 |
0 |
48,630 |
F |
38 |
5 |
2 |
0 |
51,450 |
M |
37 |
7 |
2 |
1 |
46,319 |
F |
36 |
5 |
2 |
0 |
74,425 |
M |
47 |
4 |
2 |
2 |
62,426 |
M |
41 |
1 |
3 |
0 |
29,495 |
F |
30 |
3 |
1 |
0 |
58,297 |
F |
43 |
13 |
2 |
1 |
40,470 |
M |
44 |
13 |
1 |
0 |
77,395 |
F |
50 |
7 |
2 |
2 |
41,410 |
M |
37 |
15 |
1 |
1 |
47,300 |
F |
30 |
0 |
2 |
1 |
26,074 |
M |
23 |
2 |
1 |
0 |
26,451 |
F |
24 |
3 |
1 |
0 |
25,367 |
F |
21 |
0 |
1 |
0 |
25,820 |
F |
22 |
1 |
1 |
0 |
32,008 |
M |
37 |
5 |
1 |
0 |
27,996 |
M |
28 |
2 |
1 |
0 |
45,999 |
M |
42 |
19 |
1 |
1 |
48,924 |
F |
33 |
0 |
2 |
1 |
46,986 |
F |
37 |
5 |
2 |
0 |
79,550 |
M |
50 |
0 |
3 |
2 |
72,464 |
F |
45 |
0 |
2 |
2 |
39,932 |
F |
33 |
12 |
1 |
1 |
55,869 |
F |
41 |
9 |
2 |
1 |
52,045 |
F |
39 |
8 |
2 |
1 |
26,208 |
M |
23 |
0 |
1 |
0 |
30,344 |
F |
33 |
4 |
1 |
0 |
58,054 |
M |
42 |
11 |
2 |
1 |
68,133 |
M |
51 |
14 |
2 |
1 |
31,529 |
F |
35 |
5 |
1 |
0 |
35,565 |
F |
39 |
7 |
1 |
0 |
35,986 |
M |
40 |
8 |
1 |
0 |
24,539 |
F |
21 |
0 |
1 |
0 |
25,623 |
M |
21 |
0 |
1 |
0 |
44,956 |
F |
41 |
18 |
1 |
1 |
31,298 |
F |
34 |
4 |
1 |
0 |
28,141 |
F |
28 |
2 |
1 |
0 |
29,926 |
M |
31 |
3 |
1 |
0 |
60,136 |
F |
46 |
10 |
2 |
1 |
26,527 |
F |
25 |
4 |
1 |
0 |
56,140 |
F |
41 |
10 |
2 |
1 |
43,992 |
M |
34 |
3 |
2 |
0 |
28,429 |
F |
29 |
2 |
1 |
0 |
54,800 |
M |
54 |
19 |
1 |
2 |
37,474 |
M |
41 |
10 |
1 |
0 |
29,631 |
F |
31 |
3 |
1 |
0 |
55,784 |
F |
40 |
9 |
2 |
1 |
31,497 |
F |
35 |
5 |
1 |
0 |
54,429 |
F |
40 |
8 |
2 |
1 |
31,795 |
F |
36 |
5 |
1 |
0 |
94,541 |
M |
55 |
9 |
3 |
2 |
36,716 |
F |
21 |
0 |
1 |
1 |
62,361 |
F |
47 |
11 |
2 |
1 |
69,750 |
M |
52 |
15 |
2 |
1 |
44,314 |
M |
39 |
17 |
1 |
1 |
49,405 |
F |
42 |
14 |
1 |
2 |
76,986 |
M |
48 |
6 |
2 |
2 |
31,995 |
F |
36 |
5 |
1 |
0 |
31,301 |
M |
35 |
5 |
1 |
0 |
39,850 |
F |
42 |
11 |
1 |
0 |
59,644 |
M |
44 |
15 |
2 |
1 |
49,073 |
M |
39 |
7 |
2 |
0 |
37,128 |
F |
28 |
6 |
1 |
1 |
66,708 |
F |
49 |
13 |
2 |
1 |
38,666 |
F |
29 |
7 |
1 |
1 |
44,690 |
F |
35 |
4 |
2 |
0 |
47,955 |
M |
32 |
0 |
2 |
1 |
31,002 |
F |
34 |
4 |
1 |
0 |
42,204 |
M |
31 |
1 |
2 |
0 |
80,456 |
M |
54 |
10 |
2 |
2 |
49,042 |
F |
36 |
7 |
2 |
1 |
77,154 |
M |
45 |
5 |
3 |
1 |
25,019 |
M |
21 |
0 |
1 |
0 |
64,741 |
M |
40 |
0 |
3 |
1 |
46,047 |
F |
40 |
0 |
1 |
2 |
52,175 |
F |
49 |
18 |
1 |
2 |
30,621 |
M |
33 |
4 |
1 |
0 |
49,357 |
F |
40 |
7 |
2 |
0 |
27,514 |
M |
26 |
5 |
1 |
0 |
27,987 |
F |
27 |
1 |
1 |
0 |
25,738 |
F |
22 |
0 |
1 |
0 |
64,756 |
F |
48 |
12 |
2 |
1 |
41,077 |
F |
36 |
14 |
1 |
1 |
37,118 |
F |
41 |
9 |
1 |
0 |
51,759 |
F |
38 |
8 |
2 |
1 |
97,431 |
M |
57 |
10 |
3 |
2 |
85,594 |
F |
53 |
8 |
3 |
2 |
85,457 |
M |
52 |
6 |
3 |
2 |
32,589 |
M |
37 |
6 |
1 |
0 |
28,643 |
M |
30 |
3 |
1 |
0 |
51,987 |
F |
45 |
16 |
1 |
2 |
33,803 |
F |
39 |
6 |
1 |
0 |
43,186 |
M |
38 |
16 |
1 |
1 |
Q3. Develop a model to predict the employee's salary using the employee's age, years of experience, and gender. Since gender is nominal, use 0 for male and 1 for female. The 'Multiple Regression' file has already been pre-loaded with the data, so you need only interpret the output.
Salary (dollars) |
Gender |
Age (years) |
Experience (years) |
Management Level |
Education Level |
41,711 |
F |
30 |
0 |
2 |
0 |
27,739 |
F |
26 |
1 |
1 |
0 |
67,977 |
M |
42 |
3 |
3 |
1 |
32,950 |
F |
38 |
6 |
1 |
0 |
72,899 |
F |
43 |
4 |
3 |
1 |
30,096 |
F |
32 |
4 |
1 |
0 |
42,513 |
F |
32 |
2 |
2 |
0 |
48,630 |
F |
38 |
5 |
2 |
0 |
51,450 |
M |
37 |
7 |
2 |
1 |
46,319 |
F |
36 |
5 |
2 |
0 |
74,425 |
M |
47 |
4 |
2 |
2 |
62,426 |
M |
41 |
1 |
3 |
0 |
29,495 |
F |
30 |
3 |
1 |
0 |
58,297 |
F |
43 |
13 |
2 |
1 |
40,470 |
M |
44 |
13 |
1 |
0 |
77,395 |
F |
50 |
7 |
2 |
2 |
41,410 |
M |
37 |
15 |
1 |
1 |
47,300 |
F |
30 |
0 |
2 |
1 |
26,074 |
M |
23 |
2 |
1 |
0 |
26,451 |
F |
24 |
3 |
1 |
0 |
25,367 |
F |
21 |
0 |
1 |
0 |
25,820 |
F |
22 |
1 |
1 |
0 |
32,008 |
M |
37 |
5 |
1 |
0 |
27,996 |
M |
28 |
2 |
1 |
0 |
45,999 |
M |
42 |
19 |
1 |
1 |
48,924 |
F |
33 |
0 |
2 |
1 |
46,986 |
F |
37 |
5 |
2 |
0 |
79,550 |
M |
50 |
0 |
3 |
2 |
72,464 |
F |
45 |
0 |
2 |
2 |
39,932 |
F |
33 |
12 |
1 |
1 |
55,869 |
F |
41 |
9 |
2 |
1 |
52,045 |
F |
39 |
8 |
2 |
1 |
26,208 |
M |
23 |
0 |
1 |
0 |
30,344 |
F |
33 |
4 |
1 |
0 |
58,054 |
M |
42 |
11 |
2 |
1 |
68,133 |
M |
51 |
14 |
2 |
1 |
31,529 |
F |
35 |
5 |
1 |
0 |
35,565 |
F |
39 |
7 |
1 |
0 |
35,986 |
M |
40 |
8 |
1 |
0 |
24,539 |
F |
21 |
0 |
1 |
0 |
25,623 |
M |
21 |
0 |
1 |
0 |
44,956 |
F |
41 |
18 |
1 |
1 |
31,298 |
F |
34 |
4 |
1 |
0 |
28,141 |
F |
28 |
2 |
1 |
0 |
29,926 |
M |
31 |
3 |
1 |
0 |
60,136 |
F |
46 |
10 |
2 |
1 |
26,527 |
F |
25 |
4 |
1 |
0 |
56,140 |
F |
41 |
10 |
2 |
1 |
43,992 |
M |
34 |
3 |
2 |
0 |
28,429 |
F |
29 |
2 |
1 |
0 |
54,800 |
M |
54 |
19 |
1 |
2 |
37,474 |
M |
41 |
10 |
1 |
0 |
29,631 |
F |
31 |
3 |
1 |
0 |
55,784 |
F |
40 |
9 |
2 |
1 |
31,497 |
F |
35 |
5 |
1 |
0 |
54,429 |
F |
40 |
8 |
2 |
1 |
31,795 |
F |
36 |
5 |
1 |
0 |
94,541 |
M |
55 |
9 |
3 |
2 |
36,716 |
F |
21 |
0 |
1 |
1 |
62,361 |
F |
47 |
11 |
2 |
1 |
69,750 |
M |
52 |
15 |
2 |
1 |
44,314 |
M |
39 |
17 |
1 |
1 |
49,405 |
F |
42 |
14 |
1 |
2 |
76,986 |
M |
48 |
6 |
2 |
2 |
31,995 |
F |
36 |
5 |
1 |
0 |
31,301 |
M |
35 |
5 |
1 |
0 |
39,850 |
F |
42 |
11 |
1 |
0 |
59,644 |
M |
44 |
15 |
2 |
1 |
49,073 |
M |
39 |
7 |
2 |
0 |
37,128 |
F |
28 |
6 |
1 |
1 |
66,708 |
F |
49 |
13 |
2 |
1 |
38,666 |
F |
29 |
7 |
1 |
1 |
44,690 |
F |
35 |
4 |
2 |
0 |
47,955 |
M |
32 |
0 |
2 |
1 |
31,002 |
F |
34 |
4 |
1 |
0 |
42,204 |
M |
31 |
1 |
2 |
0 |
80,456 |
M |
54 |
10 |
2 |
2 |
49,042 |
F |
36 |
7 |
2 |
1 |
77,154 |
M |
45 |
5 |
3 |
1 |
25,019 |
M |
21 |
0 |
1 |
0 |
64,741 |
M |
40 |
0 |
3 |
1 |
46,047 |
F |
40 |
0 |
1 |
2 |
52,175 |
F |
49 |
18 |
1 |
2 |
30,621 |
M |
33 |
4 |
1 |
0 |
49,357 |
F |
40 |
7 |
2 |
0 |
27,514 |
M |
26 |
5 |
1 |
0 |
27,987 |
F |
27 |
1 |
1 |
0 |
25,738 |
F |
22 |
0 |
1 |
0 |
64,756 |
F |
48 |
12 |
2 |
1 |
41,077 |
F |
36 |
14 |
1 |
1 |
37,118 |
F |
41 |
9 |
1 |
0 |
51,759 |
F |
38 |
8 |
2 |
1 |
97,431 |
M |
57 |
10 |
3 |
2 |
85,594 |
F |
53 |
8 |
3 |
2 |
85,457 |
M |
52 |
6 |
3 |
2 |
32,589 |
M |
37 |
6 |
1 |
0 |
28,643 |
M |
30 |
3 |
1 |
0 |
51,987 |
F |
45 |
16 |
1 |
2 |
33,803 |
F |
39 |
6 |
1 |
0 |
43,186 |
M |
38 |
16 |
1 |
1 |
Complete the following tasks:
a.State the multiple regression equation.
b. Interpret the meaning of the slopes in the equation.
c. Predict the salary for a 40-year-old male employee with five years' experience.
d. At the .05 level of significance, determine whether each explanatory variable makes a significant contribution to the regression model.
e. Interpret the meaning of the r-squared.
f. Interpret your findings. What changes would you make to the model, given the results?
Attachment:- Regression.rar