Method of completing the square


QUESTION 1:

A  remarkable  fact:  The  shaded  area  from x  =  1  to  infinity  is  infinite,  where revolution is finite. Prove this fact using integration.

QUESTION 2:

Explain  when  is   the  method  of  “Completing  the  Square”  useful  for  integration,  with  your  own examples. Make sure you show the step-by-step calculations and you explain them.

QUESTION 3:

Explain the method of “Partial Fractions” for solving integrals for irreducible quadratic fractions. Use your own examples in your explanation. Make sure you show the step -by-step calculation and you explain them.

QUESTION 4:

Consider  the  circle,  centre  (0,  a), and  a  radius  of  1  unit.  The  solid  of  revolution  that  will  be obtained  if  the  circle  is  revolved  about  the  x-axis  is a Torus  (a doughnut  to  most  people). Use integration to find its volume. The example on the picture below shows a circle with a centre at (0, 3). In your  calculations  do  not  use  3,  use  “a”.  You may show your calculations  with  other values for “ a”, but not 3. In your conclusion, your answer should be in terms of “a”  and not any particular value.

Performance Objectives:

Know:

Why is integration needed

How to solve integrals using advanced meth

How to calculate areas and volumes

Request for Solution File

Ask an Expert for Answer!!
Other Subject: Method of completing the square
Reference No:- TGS01613840

Expected delivery within 24 Hours