Maximum and minimum values of objective function coefficient


Two products are produced:                       
                       
Shirt    Each shirt has a retail price of $250. Each shirt costs $150 in labor and material.                   
                       
Coat    Each coat has a retail price of $200. Each coat costs $50 in labor and material.                   
                       
There are 7200 minutes available of cutting time available

There are 7200 minutes available of sewing time available                       
                       
Each shirt takes 30 minutes of cutting, and 45 minutes of sewing                       
                       
Each coat takes 20 minutes of cutting and 15 minutes of sewing                       
                       
At least 20% of production must be in shirts                       
                       
Question 1: Set up a linear programming model to determine how many units of shirts and coats must be produced to maximize the company's profit (Solve for X1 and X2)
                       
Question 2: Use inequality method and 100% rule to determine the maximum and minimum values of objective function coefficients can be without changing the values of the decision variables, which yield the optimal solution.                       
                       
Question 3) Use systems of equations to deterimine right side ranges and dual price for each constraint AND INTERPRET IT.

Solution Preview :

Prepared by a verified Expert
Basic Statistics: Maximum and minimum values of objective function coefficient
Reference No:- TGS01448034

Now Priced at $20 (50% Discount)

Recommended (92%)

Rated (4.4/5)