Maximize and minimize the quantity subject to constraints


Problems:

Complete each problem below.  You must show all of your work to receive credit for a problem.

1.)

Without graphing, determine which of the following three points:

P1 = (8,6)

P2 = (2,5)

P3 = (4,1)

are part of the graph of the following system:

y - 10x <= 0

2y - 3x >= 0

  y + x <= 15

2.)

Maximize and minimize the quantity z = 15x + 20y subject to the constraints:

      x <= 6

      y <= 6

3x + 2y >= 6

      x >= 0

      y >= 0

3.)

Maximize:

z = 4x + y

subject to the constraints:

0 <= x <= 7

0 <= y <= 8

 x + y >= 2

4.)

Transpose this augmented matrix:

[  1  8  7  9 ]

[  0  2  5  1 ]

[ -4 -1  0 17 ]

5.)

Maximize:

P = 300x1 + 200x2 + 450x3

Subject to :

     4x1 + 3x2 + 5x3 <= 140

     x1 + x2 + x3    =  30

6.)

Minimize

P = 2x1 + x2

subject to:

2x1 + 2x2 >= 8

x1  -  x2   >= 2

7.)

Maximize:

P = x1 + 2x2 + x3

Subject to the constraints:

  3x1 + x2 + x3 <= 3

x1 - 10x2 - 4x3 <= 20

             x1 >= 0

             x2 >= 0 

             x3 >= 0

Solution Preview :

Prepared by a verified Expert
Mathematics: Maximize and minimize the quantity subject to constraints
Reference No:- TGS01920966

Now Priced at $20 (50% Discount)

Recommended (94%)

Rated (4.6/5)