Cellular respiration Kreb's cycle Calvin cycle Stroma
Thylakoid space Matrix Mitochondrion Electron transport chain
Cytosol Electron transport Chemiosmosis Glycolysis
Intermembrane space ATP synthase Oxidative phosphorylation Substrate level phosphorylation
Proton-motive force
______________, a catabolic process which provides energy to regenerate ATP, occurs in three stages: ____________, ______________, and _____________. _______________, the breakdown of glucose to pyruvate, occurs in the ___________. This pathway nets two molecules of ATP (produced by a mechanism known as ______________________) and two molecules of _____________. In the presence of oxygen, pyruvate moves into the _________________, where it is completely oxidized to ______________ by the ________________. In the process, two molecules of ATP are formed (again by ___________________) and electrons are passed to eight molecules of ______________ and two molecules of _____________. Although a total of four ATP molecules per glucose have formed at this point, most of the ATP produced from the energy stored in glucose will be produced by ________________, when ______________ and ______________ donate their electrons to the ___________________. In this stage, a series of increasingly electronegative components embedded in the inner mitochondrial membrane pass down electrons while pumping H+ ions from the ___________ to the ________________. The potential energy created by the electrochemical gradient is known as the ______________. As H+ ions diffuse down their concentration gradient through _________________ that is embedded in the inner membrane, ATP is synthesized in the mitochondrial _____________. Electrons are ultimately passed to ___________, reducing it to _____________.