1.   Monopoly:
Because  of  a  drug  patent,  the  market  for  a  certain  new  prescription  drug  is  a  monopoly.  Assume  the  market  demand  is  given  by  P = 130-2Q.  The  marginal  cost  is  given  by  MC = 10 + Q.  
 
a.   What  is  the  marginal  revenue  curve  of  this  monopolist
b.   Graph  the  demand,  marginal  revenue,  and  marginal  cost  curves.
c.   What is  the  socially  optimal  level  of  production
d.   What  is  the  monopolist’s  ideal  quantity  of production  if  the  monopolist  only  charges  one price  for  the  good   What  price  does  he  charge
e.   What  are  the  consumer  and  producer  surpluses  for  the  monopolist  described  in  part (d)  What  is  the  deadweight  loss  for  this  monopolist   Mark  these  areas  on  your  graph.
f.    If  the  total  cost  curve  is  given  by  TC = 15 + 10Q + Q2,  what  is  the  monopolist’s  ATC   What’s  the  monopolist’s  profit   In  the  LR,  can  the  monopolist  stay  in  business  (Note:  you  do  not  need  to  graph  TC  or  ATC  to  do  this  question.)
g.   T/F:  The  “double-the-slope”  method  for  finding  MR  works  both  when  your  demand  curve  is  solved  for  Q  and  when  it  is  solved  for  P. 
2.    Natural  Monopoly:
Suppose  a  local  utility  company  has  a  TC  function  given  by  TC = 400 + 4Q.  The  demand  is  given  by  P = 120 - 4Q,  and  the  MC  is  constant  at  $4.  
 
a.   What’s  the  equation  for  the  ATC
b.   If  the  government  decides  to  regulate  the  industry  through  MC  pricing,  what’s  the  minimum  subsidy  necessary  to  keep  the  firm  in  business
c.   Suppose  this  firm  is  regulated and  told  that  it  must  produce  at least  15  units  of  the  good  and  that  it  should  select  that  price  and  output  given  its  cost  curves  that  will  result  in  the  firm  earning  zero  economic  profit.  Given  this  regulatory  directive,  what  price  and  quantity  will  be  produced  
3.   Externalities:
On  Aloha  Island,  the  supply  of  widgets  is  given  by  P = 30-Q  and  the  demand  for  widgets  is  given  by  P=Q.  It  is  estimated  that  for  every  widget  that’s  produced, the  factory  creates  enough  pollution to  cost  the  local  fishing  industry  $2.  
 
a.   What  is  the  market  equilibrium  without  regulation
b.   What  is  the e quation  for  the  Marginal  Social  Cost curve   Use  this  to  figure  out  what  the  socially  optimal  amount  of  widgets  is.  Is  the  socially  optimal  the  same  amount  as  you  found  in  part (a)
c.   The  government  could  achieve  the  out come  in  (b)  by  charging a  “pollution tax” on  each  widget  produced  equal  to  $2.  What  would  be the  deadweight  loss  if  the  government  did  not  do  this   (Hint:  draw  a  graph  with  the  unregulated  market  supply  curve,  the  MSC,  and  the  demand  curve.  Use  your  notes  to  identify  the  DWL  on  this  graph.) 
 
4.   First  Degree  Price  Discrimination:
Suppose  the  market  demand  for  psychics  is  given  by  the  equation: P = 105 - 2Q.  Currently, there  are  many  psychics  in  the  market , and  because  there  is  so  little  cost  to  being  a  psychic,  the  market  is  perfectly  competitive. The  marginal  cost  of  being  a  psychic is  $5.
a. Graph  the  demand  and  marginal  cost  for  the  psychic  market.
b. Calculate  the  equilibrium  quantity  of  psychic  consultations  in  this  market.
c. What  are  the  producer,  consumer, and  total  surpluses  Label  the m on  your  graph. 
 
Scientists  have  come  out  with  a  new  test  to  determine  with  100%  accuracy  whether  or  not  someone  is  a  psychic.  After  testing  all  of  the  psychics  that  practiced  in  the  United  States, they  found  that  there  was  only  one  who  was  actually  what she  claimed  to  be.  Now, the  lone  psychic  Miss Cleo, is  a  monopolist  psychic.  Miss  Cleo's  marginal  cost  for  providing her  services  is  a  constant  $5.
Now  that  she  is  a  monopolist,  Miss  Cleo  decides  to  take  advantage of  her  gif t and to  practice  first-degree  price  discrimination.
d. What  is  the  equation  for  marginal  revenue
e. On  a  separate  graph  from  parts  (a)  and  (b), graph  the  demand,  marginal  revenue,  and  marginal  cost  for  Miss Cleo.
f. Calculate  the  equilibrium  quantity  of  psychic  consultations in  this  market.
g. What  are  the  producer,  consumer,  and  total  surpluses  Label  the m on  your  graph.
h.  What  is the  dead weight  loss  from  Miss  Cleo acting  as  a  perfect price  discriminating  monopolist   Give  a  conceptual  explanation  of  why  this  is  the  case (i.e.  using  notions  of  efficiency). 
 
5. Third  Degree  Price  Discrimination:
Starplex  Cinema  is  trying  to  decide  whether  or not  to  use  third  degree price discrimination. They  think  that  the  demand  for movie  tickets  by  college  students  is  much  more  elastic  than  it  is  for  their  other  patrons.
Starplex  does  some  economic  studies  and  finds  that  the  demand  for  college  students  is  given  by   P  =  12 - QS.  Starplex  also  finds  that  demand  for  movie  tickets  by  non-college  patrons  is  P = 20 - 2QA.  Suppose that  Starplex  has  a  constant  marginal  cost  of  $3.
a. Graph  the  market  for  movie  tickets  on  three graphs. One for  the  total  movie  ticket  demand,  one  for n on-student  demand, and  one  for  student  demand.
b. Calculate  the  aggregate  demand  curve.
c. Calculate  the  aggregate  marginal  revenue  curve.
d. What  total  quantity  of  movie  tickets  will  be  sold  by  Starplex
e. What  price  would  Starplex  charge  if  it  were  a  single  price  monopolist  and  not  a price  discriminating  monopolist  [Hint:  this  price  is  not  a  whole  number, you  might  want  to  use your  calculator  here.]
f. Suppose  that  Starplex  decides  to  implement  third  degree  price  discrimination.  How  many tickets  will  be  purchased  by college  students   What  price  should  Starplex  charge  college  students  [Hint:  carry  your  answer  out to  two  places  past  the  decimal.]
g. Suppose  that  Starplex  decides  to  implement  third  degree  price  discrimination.  How  many  tickets  will  be  purchased  by  non-students   What  price  should  Starplex  charge n on-students  
 
6.  Game Theory:
Suppose  that  that  there  are  two  musicians:  Ricky Rock  Star  and  Harry  Hip  Hop.  Working  by  himself  Ricky  can  capture  the  rock  audience  and  earn  a  profit  of  $ 5 million.  Working by  himself  Harry  Hip  Hop  can  capture  the  rap audience  and  earn a  profit of  $5 million.  If  the  two  musicians  decide  to  collaborate  they  can  also  capture  a  third  audience  of  listeners  who like rap-rock  fusion.  Capturing  this 
audience  is  worth  a  total  o  $3  million in  profit  that  the  two  musicians  would  need  to  split  evenly.  
 
Both musicians  have  two  possible  options:  (1)  he  can  collaborate  with  the  other  musician  and share all three markets or (2)  he can  go  it  a lone  and  try  to  win  over  the  other  markets  separately.  
 
If  a  musician  chooses  not  to  collaborate,  then  he  can  release  a  CD  much  more  quickly  than  if  he  worked  with  an other  artist.  Therefore,  if  one  musician  chooses  to  collaborate  and  the  other does  not,  then  the  artist  going  it  alone will  be  able  to release a  CD  and  earn  all  of  their  own  market  and  the  fusion  audience.  If  both  decide  to  work  alone, then  the  fusion  audience  becomes  disillusioned  with  the  music  industry  and  refuses  to  buy  any  records.  
 
a. Construct  a  pay off  matrix  from  the  above  information.  The  following  matrix  is  provided  for  your  convenience.

b. Is there  a  strictly  dominant  strategy  for  Ricky  Rock  Star
c. Is  there  a  strictly  dominant  strategy  for  the  Harry Hip Hop
d. What  will  be  the  outcome  of  the game
e. Is  this  outcome  socially  optimal  (i.e. can  no  one  be  made  better-off  without  making  some one  else  worse-off)  If  so, why  If  not, which  outcome  is  socially  optimal