Lowest value for amount of time available to setup display


Problems:

1. The linear programming problem whose output follows is used to determine how many bottles of fire red nail polish (x1), bright red nail polish (x2), basic green nail polish (x3), and basic pink nail polish (x4) a beauty salon should stock. The objective function measures profit; it is assumed that every piece stocked will be sold. Constraint 1 measures display space in units. Constraint 2 measures time to set up the display in minutes. Note that green nail polish does not require any time to prepare its display.  Constraints 3 and 4 are marketing restrictions. Constraint 3 indicates that the maximum demand for fire red and bright red polish is 25 bottles, while constraint 4 specifies that the minimum demand combined for bright red, green, and pink nail polish bottles is at least 50 bottles.

MAX  100x1 + 120x2 + 150x3 + 125x4
Subject to: 1. x1 + 2x2 + 2x3 + 2x4 <= 108
 2. 3x1 + 5x2 + x4 <= 120
 3. x1 + x2 <= 25
 4. x2 + x3 + x4 >= 50
 x1, x2 , x3, x4 >= 0

Optimal Solution:
Objective Function Value = 7475.000

Variable  Value    Reduced Costs
      X1        8              0
      X2        0              5
      X3        17            0
      X4        33            0

Constraint       Slack/Surplus         Dual Prices
       1                        0                        75
       2                       63                       0
       3                        0                        25
       4                        0                       -25

Objective Coefficient Ranges

Variable         Lower Limit       Current Value       Upper Limit
     X1                 87.5                   100                        none
     X2                 none                   120                       125
     X3                 125                     150                       162
     X4                 120                     125                       150

Right Hand Side Ranges

Constraint          Lower Limit        Current Value       Upper Limit
      1                         100                 108                      123.75
      2                         57                   120                      none
      3                         8                       25                      58
      4                         41.5                650                      54

What is the lowest value for the amount of time available to setup the display before the solution (product mix) would change? 

2. The linear programming problem whose output follows is used to determine how many bottles of fire red nail polish (x1), bright red nail polish (x2), basil green nail polish (x3), and basic pink nail polish (x4) a beauty salon should stock. The objective function measures profit; it is assumed that every piece stocked will be sold. Constraint 1 measures display space in units. Constraint 2 measures time to set up the display in minutes. Note that green nail polish does not require any time to prepare its display.  Constraints 3 and 4 are marketing restrictions. Constraint 3 indicates that the maximum demand for fire red and green polish is 25 bottles, while constraint 4 specifies that the minimum demand combined for bright red, green, and pink nail polish bottles is at least 50 bottles.

MAX  100x1 + 120x2 + 150x3 + 125x4
Subject to: 1. x1 + 2x2 + 2x3 + 2x4 <= 108
 2. 3x1 + 5x2 + x4 <= 120
 3. x1 + x2 <= 25
 4. x2 + x3 + x4 >= 50
 x1, x2 , x3, x4 >= 0

Optimal Solution:
Objective Function Value = 7475.000

Variable         Value         Reduced Costs
    X1                8                     0
    X2                0                     5
    X3               17                    0
    X4               33                    0

 Constraint      Slack/Surplus     Dual Prices
     1                        0                    75
     2                       63                    0
     3                        0                     25
     4                        0                     -25

Objective Coefficient Ranges

   Variable                Lower Limit          Current Value            Upper Limit
      X1                           87.5                     100                          none
      X2                           none                    120                          125
      X3                           125                      150                          162
      X4                           120                      125                          150

Right Hand Side Ranges

                  Constraint                 Lower Limit            Current Value            Upper Limit
                        1                                100                         108                        123.75
                        2                                57                           120                          none
                        3                                8                             25                             58
                        4                                41.5                        50                              54

By how much can the per bottle profit on green basil nail polish increase before the solution (product mix) would change?

3. The production manager for the Whoppy soft drink company is considering the production of two kinds of soft drinks: regular and diet. The company operates one "8 hour" shift per day. Therefore, the production time is 480 minutes per day.  During the production process, one of the main ingredients, syrup, is limited to maximum production capacity of 675 gallons per day. Production of a regular case requires 2 minutes and 5 gallons of syrup, while production of a diet case needs 4 minutes and 3 gallons of syrup. Profits for regular soft drink are $3.00 per case, and profits for diet soft drink are $2.00 per case. What is the optimal daily profit?

Solution Preview :

Prepared by a verified Expert
Mathematics: Lowest value for amount of time available to setup display
Reference No:- TGS01920053

Now Priced at $20 (50% Discount)

Recommended (91%)

Rated (4.3/5)