Linear algebra-rank


Questions:

Let A = | a11    a12    a13 | Show that A has rank 2 if and only if one or more of the determinants
            | a21     a22   a23 |

            | a11   a12 |  | a11   a13 |    | a12      a13 |   are non zero
            | a21   a22 |  | a21   a23 |    | a22      a23 |

2. Use the result in Exercise 10 to show that the set of points (x, y, z) in R3 for which the matrix  | x y z |
                                                                                                                                                         | 1 x y |

has rank 1 is the curve with parametric equations x = t, y = t2, z = t3

3. Prove: If k does not equal to zero, then kA have the same rank.

Solution Preview :

Prepared by a verified Expert
Algebra: Linear algebra-rank
Reference No:- TGS01931855

Now Priced at $20 (50% Discount)

Recommended (93%)

Rated (4.5/5)