Let X be a continuous random variable with mean µ = 10 and variance σ2 = 100/3. Using Chebyshev's Inequality, find an upper bound for the following probabilities.
(a) P (|X - 10| ≥ 2).
(b) P (|X - 10| ≥ 5).
(c) P (|X - 10| ≥ 9).
(d) P (|X - 10| ≥ 20).