Let v be a nite-dimensional inner product space overnbspf


6. Give an orthonormal basis for null(T), where T∈L(C4) is the map with canonical matrix

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

6. Let V be a ?nite-dimensional inner product space over F, and let U be a subspace of V. Prove that the orthogonal complement U⊥ of Uwith respect to the inner product ?⋅,⋅? on V satis?es 

              dim(U⊥)=dim(V)-dim(U).

7. Let V be a ?nite-dimensional inner product space over F, and let U be a subspace of V. Prove that U=V if and only if the orthogonal complement U⊥ of U with respect to the inner product ?⋅,⋅? on V satis?es U⊥={0}.

10. Prove or give a counterexample: The Gram-Schmidt process applied to an an orthonormal list of vectors reproduces that list unchanged.

(Prove by induction)

Request for Solution File

Ask an Expert for Answer!!
Mathematics: Let v be a nite-dimensional inner product space overnbspf
Reference No:- TGS01155353

Expected delivery within 24 Hours