Level 1:
1. If α is a repeated root of ax2 + bx + c = 0, then
limx→α tan (ax2 + bx + c)/(x - α)2 is
(a) a (b) b
(c) c (d) 0
2. limx→0 (ex + e-x + 2cosx -4)/(x4) is equal to
(a) 0 (b) 1
(c) -6 (d) - 1/6
3. If limx→0 (729x - 243x - 81x + 9x + 3x -1)/X3 = k(log 3)3, then
k=
(a) 4 (b) 5
(c) 6 (d) none of these
4. limx→0 1 - cos3x/xsinxcosx =
(a) 3/2 (b) -2
(c) 1 (d) none of these
5. If f(2), g (x) be differentiable functions and f (1) = g (1) = 2 then limx→1 (f(1)g(x) - f(x)g(1)- f(1) + g(1))/(g(x)- f (x)) is equal to
(a) 0 (b) 1
(c) 2 (d) none of these
6. limx→1 ∑xr-1r/(x-1) =
(a) 0 (b) n(n+1)/2
(c) 1 (d) none of these
7. Let f (x) be a twice differentiable function and f"(0) = 5, then limx→0 (3f (x) -4f (3x) + f (9x))/x2 is equal to
(a) 30 (b) 120
(c) 40 (d) none of these
8. If (9) = 9 and f'(9) = 1, then limx→9 (3- √f(x))/(3 - √x) is equal to
(a) 0 (b) 1
(c) - 1 (d) none of these
9. limn→∞ (cosx/2 cosx/4 cosx/8.....cosx/2n) =
(a) x/sinx (b) six/x
(c) 0 (d) none of these
10. If limx→0 (sin2x + asinx/x3) be finite, then the value of a and the limit are given by
(a) - 2, 1 (b) - 2, - 1
(c) 2, 1 (d) 2, - 1
11. The value of limn→∞ 1/n4[ 1(∑nk= 1k) + 2(∑n-1k =1 k ) + 3 [n-2∑k=1 k + . . . + n.1] will be
(a) 1/24 (b) 1/12
(c)1/6 (d) 1/3
12. If α and β be the roots of ax2 + bx + c = 0, then
limx→α [ 1 + αx2 + bx + c)1/(x-α) is
(a) log |a (α - β)| (b) ea (α - β)
(c) ea(β - α) (d) none of these
13. limx→1(3√x2 - 23√(x+1))/(x-1)2 is equal to
(a) 1/9 (b) 1/6
(c) 1/3 (d) (d) none of these
14. limn→∞ ∏nr=3 (r3 -1/(r3 + 1))
(a) 1/3 (b) 6/7
(c) -2/3 (d) none of these
15. limx→5 (x2- 9x + 20)/ (x - [x]) =
(a) 1 (b) 0
(c) does not exist (d) cannot be determined
16. If [x] denotes the integral part of x, then limn→∞1/n3 (∑nk= 1[k2x]) =
(a) 0 (b) x/2
(c)x/3 (d) x/6
17. limn→∞ (tanθ + 1/2tanθ/2 + 1/22tanθ/22 + .....+ 1/2ntanθ/2n) =
(a) 1/θ (b) 1/θ -2cot 2θ
(b) 2cot2θ (d) none of these
18. limn→∞ ((x) + 2(x) + (3x) + ...... +(nx))/n2, where
{x} = x - [x] denotes the fractional part of x, is
(a) 1 (b) 0
(c) 1/2 (d) none of these
19. limx→a (sinx/sina)1/(x-a), a ≠ nΠ, n is an integer, equals
(a) ecot a (b) etan a
(c) esin a (d) ecos a
20. limx→0 (1 + tan x)/(1 + sin x)1/sinx is equals to
(a) 0 (b) 1
(c) - 1 (d) none of these
21. limx→a (2 - x/a)tanΠx/2a is equal to
(a)eΠ/2 (b) e2/Π
(c) e-2/Π (d) e-Π/2
22. limx→0 (cosx + a sinbx)a/x is equal to
(a) e-a2b (b) eab2
(c) ea2b (d) e-b2a
23. The value of limx→0(sinx/x)sinx/(x-xinx) is
(a) 1 (b) - 1
(c) 0 (d) none of these
24. If Ai = x- ai/|x- ai|, i = 1, 2, ..., n and if a1 < a2 < a3 <..... < an. Then limx→0 (A1A2...An), 1 ≤ m ≤ n
(a) is equal to (- 1)m (b) is equal to (- 1)m + 1
(c) is equal to (- 1)m -1 (d) does not exist
25. limx→0 xx is equal to
(a) 0 (b) 1
(c) - 1 (d) none of these
26. limx→0 tan([-Π2]x) - x2tan(-Π2)/sin2x equals, where [] denotes the greatest integer function
(a) 0 (b) 1
(c) tan10 -10 (d) ∞
27. limx→1 xsin{x}/(x-1), where {x} denotes the fractional part of x, is equal to
(a) -1 (b) 0
(c) 1 (d) does not exist
28. limn→∞ {7/10 + 29/102 + 133/103 +.....+ (5n + 2n)/10n} is equal to
(a) 3/4 (b) 2
(c) 5/4 (d) 1/2
29. limx→-1 ((x4 + x2 + x + 1)/(x2 - x + 1))1 - cos(x+1)/(x + 1)2 is equal to
(a) 1 (b) (2/3)1/2
(c) (3/2)1/2 (d) e1/2
30. limn→∞(cosx/n)n is equal to
(a) e1 (b) e-1
(c) 1 (d) none of these
31. limx→0+ (b/x)[x/a] where a > 0, b > 0 and [x] denotes greatest integer less than or equal to x is
(a) 1/a (b) b
(c) b/a (d) 0
32. If f(x) = {sin[x]/[x], [x] ≠ 0, where [x] denotes the greatest integer ≤ x, then limx→0 f(x) equals
{ 0, [x] = 0
(a) 0 (c) -1
(c) 1 (d) none of these
33. limx→0(ln cosx/4√(1 + x2 -1)) is
(a) loga 6 (b) loga3
(c) loga 2 (d) none of these
34. The value of limx→3(loga(x-3/(√(x + 6) -3)))) is
(a) loga6 (b) loga3
(c) loga2 (b) none of these
35. limh→0(2[√3 sin(Π/6 + h) - cos(Π/6 + h)])/(√3h(√3 cosh -sinh) is equal to
(a) 4/3 (b) -4/3
(c) 2/3 (b) 3/4
36. Let f (x) = x - [x], where [x] denotes the greatest integer ≤ x and g(x) = limn→∞[f(x)]2n - 1/[f(x)]2n + 1, then g (x) =
(a) 0 (b) 1
(c) -1 (d) none of these
37. If f (x) = { tan-1([x] + x)/[x] - 2x, [x] ≠ 0
{ 0, [x] = 0
where [x] denotes the greatest integer less than or equal to x, then limx→0 f (x) is equal to
(a) -1/2 (b) 1
(c) Π/4 (d) does not exist
38. limx→2 (2x - x2)/(xx - 22) is equal to
(a) log 2 -1/(log2+1) (b) log 2 + 1/(log2 - 1)
(c) 1 (d) - 1
39. If limx→0 (xn - sinxn)/(x - sinn x) is non-zero finite, then n may be equal to
(a) 1 (b) 2
(c) 3 (d) none of these
40. limx→Π/2 (sin x - (sin x)sin x )/(1 - sin x + In sin x)
(a) 1 (b) 2
(c) 3 (d) 4
41. The value of limx→a √(a2 - x2) cotΠ/2 √((a -x)/(a + x)) is
(a) 2a/Π (b) - 2a/Π
(c) 4a/Π (d) -4a/Π
42. limx→∞/2 f (x), where 2x- 3/x < f(x) < (2x2 + 5x)/x2 is
(a) 1 (b) 2
(c) -1 (d) -2
43. limx→0 (cosec3x.cotx - 2 cot3 x.cosec x + cot4x/sec x ) is equal to
(a) 1 (b) - 1
(c) 0 (d) none of these
Level 2:
44. The value of limx→0([100/sin x] + [99sinx/x]), where [.] represents greatest integer function, is
(a) 199 (b) 198
(c) 0 (d) none of these
45. If f (x) = sin x, x ≠ nΠ,
= 2, x = nΠ
where n ∈ Z and
g (x) = x2 + 1, x ≠ nΠ,
= 3, x = 2.
then limx→0 g[f (x)] is
(a) 1 (b) 0
(c) 3 (d) does not exist
46. The value of limx→∞ (√x +√x + √x - √x) is
(a) 1/2 (b) 1
(c) 0 (d) none of these
47. The value of limx→∞[tan-1 (x +1)/(x+2) - Π/4] is
(a) 1/2 (b) -1/2
(c) 1 (d) -1
48. limn→∞ cos(Π√(n2 +n), n ∈ Z is equal to
(a) 0 (b) 1
(c) - 1 (d) None of these
49. limn→∞ (nk sin2(n!))/(n +2), 0 < k < 1, is equal to
(a) ∞ (b) 1
(c) 0 (d) none of these
50. limx→1 √((1 - cos2(x -1))/(x -1)
(a) exists and it equals √2
(b) exists and it equals - √2
(c) does not exist because (x - 1) → 0,
(d) does not exist because left hand limit is not equal to right hand limit
51. The value of limx→∞ x5/5x is
(a) 1 (b) - 1
(c) 0 (d) none of these
52. limx→0(cosx + sinx)1/x is equal to
(a) e (b) e2
(c) e-1 (d) 1
53. The value of limx→Π/4 ((2√2 - cosx + sinx)3)/(1 - sin2x) is
(a) 3/√2 (b) √2/3
(c) 1/√2 (d) √2
54. The value of limh→0 (ln( 1 + 2h) - 2ln(1+ h))/h2 is
(a) 1 (b) - 1
(c) 0 (d) none of these
55. The value of limn→∞( 1/n + e1/n/n + e2/n/n + .....+ e(n-1)/n/n ) is
(a)1 (b) 0
(c) e - 1 (d) e + 1
56. limx→1 xsin(x - [x])/(x-1), where [.] denotes the greatest integer function, is equal to
(a) 1 (b) -1
(c) ∞ (d) does not exist
57. If f(x) = ∫2sinx - sin2x/x3dx, x ≠ 0, then limx→0 f '(x) is
(a) 0 (b)∞
(c) - 1 (d) 1
58. limx→Π/2 [x/2]/ln(sinx) (where [.] denotes the greatest integer function)
(a) does not exist (b) equals 1
(c) equals 0 (d) equals - 1
59. limm→∞limn→∞ (1 + cos2m n!Πx) is equal to
(a) 2 (b) 1
(c) 0 (d) none of these
-3])]
60. limx→0 [sin([x-3])/[x-3]], where [ . ] represents greatest integer function, is
(a) 0 (b) 1
(c) does not exist (d) sin 1
61. The values of constants a and b so that
limx→∞ ((x2+1)/(x+1) - ax -b) =0 are
(a) a = 1, b = - 1 (b) a= -1, b = 1
(c) a = 0, b = 0 (d) a =2, b = -1
62. limx→∞ (1/1.2 + 1/2.3 + 1/3.4 + ...+ 1/n(n +1) is equal to
(a) 1 (b) - 1
(c) 0 (d) none of these
63. limx→∞ (log x)2/xn, n > 0 is equal to
(a) 1 (b) 0
(c) - 1 (d) 1/2
64. If the rth term, tr, of a series is given by tr = r4 + r2 +1, then limn→∞ Σr=1n tr, is
(a) 1 (b) -2
(c) 1/3 (d) none of these
65. limx→n(-1)[x], where [x] denotes the greatest integer less than or equal to x, is equal to
(a) (-1)n (b) (-1)n-1
(c) 0 (d) does not exist
66. limx→1 y3/x3 - y2 - 1 as (x, y) → (1, 0) along the line
y→o
y = x - 1 is given by
(a) 1 (b) ∞
(c) 0 (d) none of these
67. limx→∞ (1 - 2 + 3 - 4 + 5 - 6 + ...-2n)/((√n2 + 1) + √(4n2 - 1)) is equal to
(a) 1/3 (b) -1/3
(c) -1/5 (d) none of these
68. The value of limx→-∞ [x4sin(1/x) + x2/(1 + |x|3)] is
(a) 1 (b) -1
(c) ∞ (d) none of these
69. limx→2 (2x + 23-x - 6))/(2-x/2 - 21-x) is equal to
(a) 8 (b) -1
(c) 2 (d) none of these
70. limx→0 8/x8(1- cosx2/2 - cosx4/4 + cosx2/2 cosx2/4) is equal to
(a) 1/16 (b) -1/16
(c) 1/32 (d) -1/32
71. limn→∞[logn-1(n).logn(n+1).logn+1(n + 2) ......lognk-1(nk) ] is equal to
(a) 0. (b) n
(c) k (d) none of these
72. limn→∞[1/1.3 + 1/3.5 + 1/5.7 + .......+ 1/(2n+1)(2n+3) is equal to
(a) 1 (b) 1/2
(c) -1/2 (d) none of these
73. The value of limx→∞[11/x + 21/x + 31/x +......+ n1/x ] is
(a) n! (b) 1/2
(c) -1/2 (d) none of these
74. limn→∞ (1 +x)(1 +x2)(1 +x4) ........ (1 + x2n), |x| < 1 is equal to
(a) 1/(x-1) (b)1/(1-x)
(c) 1 - x (d) x - 1
75. limx→∞ xn/ex= 0, (n integer), for
(a) no value of n
(b) all values of n
(c) only negative values of n
(d) only positive values of n
76. The value of is limx→1 (xn + xn-1 + xn-2 + ...+ x2 + x - n)/(x - 1) is
(a) n(n+1)/2 (b) 0
(c) 1 (d) n
77. If tr = (12 + 22 + 32 +...+r2)/(13 +23 +33 +...+r3) and Sn = ∑nr=1(-1)r, then limn→∞, is given by
(a) 2/3 (b) -2/3
(c) 1/3 (d) -1/3
78. If limx→0 ((1 + a3) + 8e1/x)/( 1 + (1 - b3)e1/x) = 2 then
(a) a = 1, b = (- 3)1/3 (b) a = 1, b = 31/3
(c) a = - 1, b = - (3)1/3 (d) none of these
79. If a = min {x2 + 4x + 5, x ∈ R} and b =limθ→01 - cos2θ/θ2 then the value of ∑nr=0ar.bn-r is
(a) (2n+1 -1)/4.2n (b) 2n + 1 - 1
(c) (2n+1 - 1)/3.2n (d) none of these
80. limn→∞ ((1.2+2.3+3.4+...+n(n+1))/n3 is equal to
(a) 1 (b) - 1
(c) 1/3 (d) none of these
81. limx→0 log(1 + x + x2) + log(1 - x + x2) is is equal to
(a) 1 (b) - 1
(c) 0 (d) ∞
82. limx→e lim (ln x -1)/|x -e| is equal to
(a) 1/e (b)-1/e
(c) e (d) does not exist
83. If x1 = 3 and xn+1 = √(2 + xn), n ≥ 1, then limn→∞ Xn is equal to
(a) -1 (b) 2
(c) √5 (d) 3
84. The value of limx→∞ (3x+1 - 5x+1)/(3x -5x) is
(a) 5 (b) -5
(c) - 5 (d) none of these
85. limn→∞ 1/n ( 1+ e1/n + e2/n + .....+ en-1/n) is equal to
(a) e (b) - e
(c) e - 1 (d) 1 - e
86. limx→∞√(x + sinx)/(x - cosx) =
(a) 0 (b) 1
(c) - 1 (d) none of these
87. If Sn = ∑ni=1ai and limn→∞ an = a, then limn→∞ (Sn+1 -Sn)/(√∑ni=1i) is equal to
(a) 0 (b) a
(c) √2a (d) none of these
88. The value of limn→∞ [3√(n2 - n3) +n] is
(a) 1/3 (b) -1/3
(c) 2/3 (d) -2/3
89. The value of limn→∞ (4√(n5 + 2) - 3√(n2 + 1)/ (5√(n4 + 2) - 2√(n3 + 1) is
(a) 1 (b) 0
(c) -1 (d) ∞
90. The integer n for which limx→0 ((cos x -1) (cos x - ex))/xn is a finite non-zero number, is
(a) 1 (b) 2
(c) 3 (d) 4
91. The value of limx→∞ (2√x +33√x + 55√x)/(√3x - 2 + 3√2x -3) is
(a) 2/√3 (b) √3
(c) 1/√3 (d) none of these
92. limx→0 (x3√(z2 - (z-x)2))/(3√(8xz - 4x2) + 3√(8xz)4 is equal to
(a) z/211/3 (b) 1/223/3.z
(c) 221/3z (d) none of these
93. In a circle of radius r, an isosceles triangle ABC is inscribed with AB = AC. If the ΔABC has perimeter P = 2[√(2 hr - h2) + √(2 hr) and area A = h√(2 hr - h2), where h is the altitude from A to BC, then limh→0+ A/P3 is equal to
(a) 128 r (b) 1/128r
(c) 1/64r (d) none of these
94. limx→2(√(1 - cos{2(x-2)}))/(x-2)
(a) equals 1/√2 (b) does not exist
(c) equals √2 (d) equals - √2