Question 1. Solve the problem.
If f(x) = 9x3 + 7x2 - x + C and f(-2) = 1, what is the value of C?
C = 43
C = -101
C = -5
C = -45
Question 2. Give the domain and range of the relation.
{(8, 2), (5, -8), (-1, 5), (-1, 7)}
domain = {5, 8, -1, 1}; range = {-8, 2, 5, 7}
domain = {5, 8, -1}; range = {-8, 2, 5, 7}
domain = {-8, 2, 5, 7}; range = {5, 8, -1}
domain = {5, 8, -1, -11}; range = {-8, 2, 5, 7}
Question 3. Find the value for the function.
Find f(-x) when f(x) = 3x2 - 4x + 1.
3x2 + 4x + 1
-3x2 + 4x + 1
-3x2 + 4x - 1
3x2 + 4x - 1
Question 4. Give the domain and range of the relation.
{(11, -3), (-2, -7), (-5, -6), (-5, 6)}
domain = {-3, -7, -6, 6}; range = {11, -2, -5}
domain = {11, -2, -5, -15}; range = {-3, -7, -6, 6}
domain = {11, -2, -5, 5}; range = {-3, -7, -6, 6}
domain = {11, -2, -5}; range = {-3, -7, -6, 6}
Question 5. Find the value for the function.
Find f(x + h) when f(x) = 3x2 - 4x - 3.
3x2 + 3xh + 3h2 - 4x - 4h - 3
3x2 + 3h2 - 4x - 4h - 3
3x2 + 3h2 + 2x + 2h - 3
3x2 + 6xh + 3h2 - 4x - 4h - 3
Question 6. Find the value for the function.
Find f(x + h) when f(x) = (4x + 9)/(3x + 4) .
a. (4x + 4h + 9)/(3x + 4)
b. (4x + 4h + 9)/(3x + 3h + 4)
c. (4x + 13h)/(3x+7h)
d. (4x + 9h)/(3x + 4h)
Question 7. Determine whether the relation is a function.
{(-1, -6), (2, -5), (4, 9), (8, -5), (10, 3)}
Function
Not a function
Question 8. Find the value for the function.
Find f(2x) when f(x) = √(9x2 - 7x)
a. √(18x2 - 14x)
b. 2√(9x2 - 7x)
c. √(36x2 - 14x)
d. √(18x2 - 28x)
Question 9
Find the domain of the function.
f(x) = x2 + 8
{x|x ≠ -8}
{x|x > -8}
all real numbers
{x|x ≥ -8}
Question 10. Find the value for the function.
Find f(-9) when f(x) = |x|- 6.
-3
3
15
-15
Question 11. Give the domain and range of the relation.
{(-4, 8), (7, 9), (12, 5), (4, -5)}
domain = {4, -4, 12, 7}; range = {-5, 8, 5, 9}
domain = {4, -4, 12, 7}; range = {-5, -5, 8, 5, 9}
domain = {-5, 8, 5, 9}; range = {4, -4, 12, 7}
domain = {4, -4, 12, 7}; range = {-5, -8, 8, 5, 9}
Question 12. Determine whether the relation is a function.
{(1, -2), (1, -4), (4, -3), (9, -1), (12, 5)}
Function
Not a function
Question 13. Determine whether the relation is a function.
{(-6, 8), (-6, -5), (2, -8), (6, -8), (9, 6)}
Not a function
Function
Question 14. Solve the problem.
If a rock falls from a height of 50 meters on Earth, the height H (in meters) after x seconds is approximately
H(x) = 50 - 4.9x2.
What is the height of the rock when x = 1.9 seconds? Round to the nearest hundredth, if necessary.
67.69 m
40.69 m
32.67 m
32.31 m
Question 15. Solve the problem.
If f(x) = (x-5A)/(5x+5) and f(5) = -15, what is the value of A?
A = -91
A = -29
A = 91
A = 29
Question 16. Find the domain of the function.
g(x) = x/ (x2 - 49)
{x|x > 49}
{x|x ≠ -7, 7}
{x|x ≠ 0}
all real numbers
Question 17. Solve the problem.
If a rock falls from a height of 60 meters on Earth, the height H (in meters) after x seconds is approximately
H(x) = 60 - 4.9x2.
When does the rock strike the ground? Round to the nearest hundredth, if necessary.
2.5 sec
3.5 sec
12.24 sec
1.58 sec
Question 18. Solve the problem.
It has been determined that the number of fish f(t) that can be caught in t minutes in a certain pond using a certain bait is f(t) = 0.28t + 1, for t > 10. Find the approximate number of fish that can be caught if you fish for 38 minutes.
About 24 fish
About 42 fish
About 11 fish
About 40 fish
Question 19. Find the value for the function.
Find f(7) when f(x) = √(x2 + 5x).
√30
3√6
√74
2√21
Question 20. Find the value for the function.
Find f(-4) when f(x) = x2 - 3x + 1.
27
29
3
5
Question 21. Find the domain of the function.
f(x) = x2/(x2+4)
{x|x > -4}
{x|x ≠ -4}
all real numbers
{x|x ≠ 0}
Question 22. Determine whether the relation is a function.
{(-6, 3), (-1, 3), (1, -1), (1, 1)}
Not a function
Function
Question 23. Solve the problem.
If f(x) = (x- B)/(x-A) , f(4) = 0, and f(6) is undefined, what are the values of A and B?
A = 4, B = 6
A = -6, B = -4
A = -4, B = -6
A = 6, B = 4
Question 24. Find the domain of the function.
f(x) = 3x - 5
all real numbers
{x|x ≥ 5}
{x|x ≠ 0}
{x|x > 0}
Question 25. Find the value for the function.
Find f(1) when f(x) = (x2-8)/(x-2).
- 1
- 9
- 7/3
7