Inverse fourier transform


Assignment:

A.  A continuous time signal x(t) has the Fourier transform    X(ω) = 1/jω+b  where b is a constant. Determine the Fourier transform for v(t) = x(5t - 4).
 
V(ω)    =    1/jω+5be-jω(4/5)
 
V(ω)    =    1/ω+4be-jω(5/4)
 
V(ω)    =    1/jω+be-jω(4/5)
 
V(ω)    =    1/jω+5bejω(4/5)

B. For a discrete-time signal x[n] with the DTFT    X(Ω)  =  1/e + b  where b is an arbitrary constant compute the DTFT V(Ω) of v[n] = x[n - 5].
 
e-j5Ω/e - b
 
e-j5Ω/e + 5b
 
e-j5Ω/e + b
 
e-j5Ω/ej5Ω + b

Solution Preview :

Prepared by a verified Expert
Electrical Engineering: Inverse fourier transform
Reference No:- TGS01897572

Now Priced at $30 (50% Discount)

Recommended (90%)

Rated (4.3/5)