int1sin2x dx intcosec2x dx 12 logcosec2x -


∫1/sin2x dx = ∫cosec2x dx = 1/2 log[cosec2x - cot2x] + c = 1/2 log[tan x] + c

Detailed derivation of

∫cosec x dx = ∫cosec x(cosec x - cot x)/(cosec x - cot x) dx

= ∫(cosec2x - cosecxcotx)/(cosecx - cotx) dx

= log[cosecx - cotx] = log[(1-cosx)/sinx]

= log[2sin2(x/2)/2sin(x/2)cos(x/2)]

= log[tan(x/2)]

Request for Solution File

Ask an Expert for Answer!!
Mathematics: int1sin2x dx intcosec2x dx 12 logcosec2x -
Reference No:- TGS0209912

Expected delivery within 24 Hours