In exercises let X and Y be independent random variables. Let U = X + Y and V = Y - X. Let A = [|V| ≤ 1]. Find (i) p[A|U = 1], (ii) FV|U(0|1), (iii) FV|U(0|1), (iv) P[U ≥ 0|A], (v) FV|U(v|u).
If X and Yare each uniformly distributed over the interval 0 to 2.