Fundamental mathematics-eigenvectors and matrices


Questions:

Fundamental Mathematics: Eigenvectors and Matrices

1) Find the eigenvectors and eigenvalues of the matrix A. Hence find the matrix P and a diagonal matrix D such that A = P^1 DP and compute A^100

Where

i)A =   (7 -6)
          (8  -7)

            ( 2  0  -3)
ii)  A =  ( 1  1  -5)
            ( 0  0   1)

2.i) Verify the Cayley-Hamilton theorem for the matrix

A =( a  b)
     ( c   d)

ii) Compute the minimal polynomial of a matrix

       ( 0  -1   1)
A =  ( 1   2  -1)
       ( 1   1    0)

and decide whether the matrix is diagonalizable or not. The same question for the matrix

        (  1     1    0   0)
B =   ( -1    -1   0    0)
        ( -2    -2   2    1)
        (  1      1  -1   0)

Solution Preview :

Prepared by a verified Expert
Algebra: Fundamental mathematics-eigenvectors and matrices
Reference No:- TGS01928804

Now Priced at $20 (50% Discount)

Recommended (92%)

Rated (4.4/5)