Forecasting and confidence intervals


Assignment:

The data below present the results of a hydrological investiagtion of the snake river watershed. The main purpose of the investigation was to forecast the water yield (y inches) from april to july using the weighted water content of snow (x), estimated in april 1.

Year      X          Y        Year      X         Y
1919    23.1    10.5    1928    37.9    22.9
1920    32.8    16.7    1929    30.5    14.1
1921    31.8    18.2    1930    25.1    12.9
1922    32.0    17.0    1931    12.4    8.8
1923    30.4    16.3    1932    35.1    17.4
1924    24.0    10.5    1933    31.5    14.9
1925    39.5    23.1    1934    21.1    10.5
1926    24.2    12.4    1935    27.6    16.1
1927    52.2    24.9           

Sum x = 511.20
Sum y = 267.20
Sum x^2 = 16597
Sum y^2 = 4554
Sum x*y = 8649.8

From mini tab I get the regression equation to be

C2=0.521C1.

Assuming the relationship between x and y to be approximately linear, use the method of least squares estimation to obtain an appropriate equation for forecasting y which passes through the origin.

Find point estimates and 95% confidence intervals for:

1)    the slope of the true regression line of y on x;
2)    the standard deviation of the ‘error’ about this line;
3)    the true expected value of y when x=30.0

also obtain a 95% prediction interval for y when x=30.0

Provide complete and step by step solution for the question and show calculations and use formulas.

Solution Preview :

Prepared by a verified Expert
Basic Statistics: Forecasting and confidence intervals
Reference No:- TGS01913947

Now Priced at $30 (50% Discount)

Recommended (95%)

Rated (4.7/5)