In the table below, X1 is a random sample of 20 observations from an expo- nential population with parameter β = 1.44, so that the median, η = 1. X2 is the same data set plus a constant, 0.6, and random Gaussian noise with  mean  μ = 0  and standard deviation σ = 0.15.
| X1 1.26968 | X2 1.91282 | X1 1.52232 | X2 2.17989 | 
| 0.28875 | 1.13591 | 1.45313 | 2.11117 | 
| 0.07812 | 0.72515 | 0.65984 | 1.45181 | 
| 0.45664 | 1.19141 | 1.60555 | 2.45986 | 
| 0.68026 | 1.34322 | 0.08525 | 0.43390 | 
| 2.64165 | 3.18219 | 0.03254 | 0.76736 | 
| 0.21319 | 0.88740 | 0.75033 | 1.16390 | 
| 2.11448 | 2.68491 | 1.34203 | 2.01198 | 
| 1.43462 | 2.16498 | 1.25397 | 1.80569 | 
| 2.29095 | 2.84725 | 3.16319 | 3.77947 | 
(i) Consider the "postulate" that the median for both data sets is η0 = 1 (which, of course, is not true). Generate a table of signs, Dmi , of deviations from this postulated median.
(ii) For each data set, determine the test statistic, T +. What percentage of the observations in each data set has plus signs? Informally, what does this indicate about the possibility  that  the  true median in each  case is as postulated?