Assignment:
Q1. Find the equation of the tangent line in Cartesian coordinates of the curve given in polor coordinates by
r = 3 - 2 cos Ø, at Ø= (π / 3)
Q2.Test for convergence or divergence, absolute or conditional. If the series converges and it is possible to find the sum, then do so.
a) ∑[∞/n=1] (3/ 2n)
b) ∑[∞/n=2] (1 / n ln n)
c) ∑[∞/n=0] (((3n2) + n +1) / (n4+1))
d) ∑[∞/n=1] ((n+1)/(2n+3))
e) ∑[∞/n=1] ((n!) / (2n) (n2))
f) ∑[∞/n=1] (((-1)n) /( n(1/2)))
Q3. Find the open interval of convergence and test the endpoints for absolute and conditional convergence.
a) ∑[∞/ n=1] ((x+1)n) / ((3n)(n))
b) ∑[∞/n=1] ((x-4)(n+1)) / ((n+3)2)
Provide complete and step by step solution for the question and show calculations and use formulas.