Finding open interval of convergence


Assignment:

Q1. Find the equation of the tangent line in Cartesian coordinates of the curve given in polor coordinates by 

r = 3 - 2 cos Ø, at Ø= (π / 3)

Q2.Test for convergence or divergence, absolute or conditional.  If the series converges and it is possible to find the sum, then do so.

a) ∑[∞/n=1] (3/ 2n)

b) ∑[∞/n=2] (1 / n ln n)

c) ∑[∞/n=0] (((3n2) + n +1) / (n4+1))

d) ∑[∞/n=1] ((n+1)/(2n+3))

e) ∑[∞/n=1] ((n!) / (2n) (n2))

f) ∑[∞/n=1] (((-1)n) /( n(1/2)))

Q3. Find the open interval of convergence and test the endpoints for absolute and conditional convergence.

a) ∑[∞/ n=1] ((x+1)n) / ((3n)(n))

b) ∑[∞/n=1] ((x-4)(n+1)) / ((n+3)2)

Provide complete and step by step solution for the question and show calculations and use formulas.

Solution Preview :

Prepared by a verified Expert
Mathematics: Finding open interval of convergence
Reference No:- TGS01920850

Now Priced at $30 (50% Discount)

Recommended (98%)

Rated (4.3/5)