1. Find the exact value: sin-1[sin(-9π/8)]
2. Find the exact value: sin-1(cos(3π/4))
3. Establish the identity: (cot θ/1-tan θ) + (tan θ/1 - cot θ) = 1 + tan θ + cot θ
4. Find the exact value of: tan(sin-1(3/5)+(π/6))
5. Establish the identity: sin(α+β)/sin(α-β) = tan α + tan β/tan α - tan β
6. Find the exact value of: csc(7π/8)
7. Establish the identity: tan v/2 = csc v - cot v
8. Establish the identity: sin(4θ) - sin(8θ)/cos(4θ) - cos(8θ) = -cot(6θ)
9. Solve the equation. Give general formula for all the solutions. List six solutions.
tan θ/2 = -1
10. Solve on the interval 0 ≤ θ < 2π:
3(1 - cos θ) = sin2θ
11. If tan α = x + 1 and tan β = x - 1, show that 2cot(α - β) = x2.