Find the domain of function


Assignment:

Inverse functions

Differentiate the problems:

1) f(x) = ln(x^2 + 10)

2) f(Ø) = ln(cos Ø)

3) f(x) =log2(1-3x)

4) f(x) = 5thROOT(ln x)

5) f(x)=SQRTx * (ln x)

6) f(t) = ln [(2t+1)^3 / (3t-1)^4]

7) h(x)=ln(x + SQRT(x^2-1))

8) g(x)=ln[(a-x)/(a+x)]

9) f(u)= (ln u) / (1+ln(2u))

10) h(t)=t^3-3^t

11) f(x)=cos(lnx)

12) f(x)=log10[(x)/(x-1)]

13) f(x)=ln 5thROOT(x)

14) f(x)= [(1+lnt)/(1-lnt)]

15) f(y)=yln(1+e^y)

16) y=ln(x^4sin2 x)

17) y=10^(tanØ)

18) y=ln|2-x-5x^2|

19) g(u)=ln[SQRT (3u+2/3u-2)]

20) y=ln(e^-x + xe^-x)

21) y=5^(-1/x)

22) y=2^3^(x^2)

Find y' and y"

1) y=xlnx

2) y=log10x

3) y=(lnx)/x^2

4) y=ln(secx+tanx)

Differentiate f and find the domain of f.

1) f(x)= [(x)/(1-ln(x-1))]

2) f(x) = 1 / (1+lnx)

3) f(x)=x^2ln(1-x^2)

4) f(x)=ln ln ln x

Find f'(x)

1) f(x)=sinx+lnx

2) )f(x)=x^(cosx)

Use logarithmic differentiation to find the derivative of the function.

1) y=(2x+1)^5 (x^4-3)^6

2) y=(SQRTx)(e^x^2)(x^2+1)^10

3) y=[(sin2x)(tan4x)/(x^2 + 1)^2

4) y=x^x

5) y=x^(sinx)

6) y=(lnx)^x

7) y=x^e^x

8) y=x^(1/x)

9) y=(sinx)^x

Evaluate the integral

1) ∫(4 on top, 2 on bottom) (3/x) dx

2) ∫(2 on top, 1 on bottom) (dt) / (8-3t)

3) ∫(e on top, 1 on bottom) [(x^2+x+1)/ (x)] dx

4) ∫ [(2-x^2) /(6x-x^3)] dx

5) ∫(2 on top, 1 on bottom) [(4+u^2) / (u^3)] du

6) ∫(4 on top, 2 on bottom) (3/x) dx

7) ∫(9 on top, 4 on bottom) [(SQRTx) + (1/(SQRTX)]^2 dx

8) ∫(6 on top, e on bottom) [(dx)/ (xlnx)]

9) ∫ [(cosx) / (2+sinx)]dx

10) ∫(2 on top, 1 on bottom) (10t) dt

11) ∫ [(ln x)^2 / x] dx

12) ∫[(e^x) / (e^x+1)] dx

13) ∫ [(x)(2^x^2) ] dx

Solution Preview :

Prepared by a verified Expert
Mathematics: Find the domain of function
Reference No:- TGS01940116

Now Priced at $35 (50% Discount)

Recommended (94%)

Rated (4.6/5)