1. The function is f(x, y, z) = x2 y3 z4, compute the derivative of x.
2. Compute the derivatives of f(x, y) =ln(x2+y3).
3. Use directional derivative to approximate e0.1√4.01 and determine the percentage error of the estimate.
4. Find the absolute maximum and minimum value function f(x) = x4 - 4x3 + 2x2 +4x + 3 on the interval [0, 4].
5. Find the critical points for the function f(x, y) = x4 + y4 -4xy.
6. Find the maximum and minimum values of f(x, y) = 2x2 +3y2 subject to the constraint x2 + y2 = 4.
7. Find the maximum and minimum values of f(x, y, z) =xyz, subject to the constraint x2 + 2y2 + 3z2 = 6.
8. Show the intersection of the two paraboloids f(x, y) = x2 +y2 and g(x, y) = 16 - x2 - y2 above the square -3 ?x ? 3, -3 ? y ? 3.
9. Plot the graph of the function e-x2-y2 above the rectangle -2 ? x ? 2, -2 ? y ? 2.