1. Use the graph of f(x) below to find the following:
(a) limx→0' f (x)
(b) limx→4+ f (x)
(c) limx→2 f(x)
(d) limx→3 f(x)
(e) limx→∞ f(x)
(f) limx→-∞ f(x)
(g) points where f is not continuous
(h) points where f is not differentiable
(i) intervals where f'> 0
(j) intervals where f' < 0
(k) intervals where f"> 0
(l) intervals where f" < 0
2. Find the following limits:
(a) limx→-1 x2 + x/x2 - x - 2
(b) limx→2 x2 + x/ x2 -x-2
(c) limx→∞ x2 + x/ x2 -x-2
3. Find f' (x) using the definition of the derivative if f (x) = 3x2 -1.
4. Find f'(x) using the rules of derivatives:
(a) f (x) = (x + 2)3(x-3)5
(b) f (x)= √(3x2 +1)
(c) f (x) = e2x/6x
(d) f (x) = 3x -x1/3
(e) f (x) = ln(√x + 1)
(f) f (x) = 51n(x2 - x +3)
(g) f (x) = 3log2(x)-1