Find a linear trend equation


Discuss the below:

The data in DJIA.XLS (CD-> browse->Excel_Data_Files) represent the closing value of the Dow Jones Industrial Average (DJIA) over the 24-year period 1979 through 2002.

Response the following:

Q1. Find a linear trend equation to these data.

a) Y^ = -934.2717 + 452.5928X

b) Y^ = 934.2717 + 452.5928X

c) Y^ = -934.2717 - 452.5928X

Q2. Find a quadratic trend equation to these data.

a) Y^ = -934.2717 + 452.5928X + 36.0199X2

b) Y^ = 896.9213 - 468.2345X + 21.7138X2

c) Y^ = 896.9213 - 46.82345X + 21.7138X2

Q3. Find an exponential trend equation to these data.

a) log10Y^ = 1528.8697 - 259.9109X

b) log10Y^ = 2.8797 + 0.05241X

c) log10Y^ = 2861.4 + 0.0549X

Q4. Which model appears to be the most appropriate?

a) Linear trend model

b) Quadratic trend

c) Exponential trend model

Q5. Using the most appropriate model as selected in 4), forecast the closing value for the DJIA in 2003.

a) 8,161.8278

b) 13,724.2782

c) 11,199.5167

Year Coded Year DJIA
1979 0 838.7
1980 1 964
1981 2 875
1982 3 1046.5
1983 4 1258.6
1984 5 1211.6
1985 6 1546.7
1986 7 1896
1987 8 1938.8
1988 9 2168.6
1989 10 2753.2
1990 11 2633.7
1991 12 3168.8
1992 13 3301.1
1993 14 3754.1
1994 15 3834.4
1995 16 5117.1
1996 17 6448.3
1997 18 7908.3
1998 19 9181.4
1999 20 11497.1
2000 21 10788
2001 22 10021.5
2002 23 8341.6

Solution Preview :

Prepared by a verified Expert
Basic Statistics: Find a linear trend equation
Reference No:- TGS01896320

Now Priced at $20 (50% Discount)

Recommended (98%)

Rated (4.3/5)