Discuss the below:
Energy Generation and Nuclear Fission
Q1: The most famous equation in all of the natural sciences is probably:
E = mc^2
Derived by Albert Einstein at the beginning of the 20th century it summarizes the equivalence of energy (E) and mass (M) . That c^2 is so large (c^2 is the speed of light of light (3.0 x 10^8 m/s) squared, 9.0 x 10^16 m^2/s^2 means that a tremendous amount of energy can be obtained from a small of matter.
Q2: Explain how equation applies to nuclear fission. In your answer illustrate your explanation with an example, being sure to distinguish between mass and mass number, and explain how a nuclear equation differs from a chemical equation. In addition compare the energy released during fission with energy produced from a typical chemical reaction (such as fossil fuel oxidation). It may be useful for you to consider that the combustion of methane releases 50.1 kJ/g- how much mass is lost to produce 50.1 kJ?