Discuss the below:
Q1. Given the following population data: 1,2,4,5,8,9,12, and the lists of all samples of size 2 and 5:
Samples of n = 2
|
xbar
|
1,2
|
1.5
|
1,4
|
2.5
|
1,5
|
3
|
1,8
|
4.5
|
1,9
|
5
|
1,12
|
6.5
|
2,4
|
3
|
2,5
|
3.5
|
2,8
|
5
|
2,9
|
5.5
|
2,12
|
7
|
4,5
|
4.5
|
4,8
|
6
|
4,9
|
6.5
|
4,12
|
8
|
5,8
|
6.5
|
5,9
|
7
|
5,12
|
8.5
|
8,9
|
8.5
|
8,12
|
10
|
9,12
|
10.5
|
Samples of
n = 5
|
xbar
|
1,2,4,5,8
|
4
|
1,2,4,5,9
|
4.2
|
1,2,4,5,12
|
4.6
|
1,2,4,8,9
|
4.8
|
1,2,4,8,12
|
5.4
|
1,2,4,9,12
|
5.6
|
1,2,5,8,9
|
5
|
1,2,5,8,12
|
5.6
|
1,2,5,9,12
|
5.8
|
1,2,8,9,12
|
6.4
|
1,4,5,8,9
|
5.4
|
1,4,5,8,12
|
6
|
1,4,5,9,12
|
6.2
|
1,4,8,9,12
|
6.8
|
1,5,8,9,12
|
7
|
2,4,5,8,9
|
5.6
|
2,4,5,8,12
|
6.2
|
2,4,5,9,12
|
6.4
|
2,5,8,9,12
|
7.2
|
4,5,8,9,12
|
7.6
|
2,4,8,9,12
|
7
|
For population
s = ?
m = ?
For n = 2
sxbar = ?
mxbar = ?
For n = 5
sxbar = ?
mxbar = ?
a) Use Excel to find the six ? values above.
b) Consider the three values of mean and the three values of standard deviation in a). Verify (mathematically) that the Central Limit Theorem applies using the formulas:
µ = µxbar and σxbar = σ / √n
c) Why are your answers from a) and b) slightly off?