1. (a) Given that sinh(x), cosh(x) and tanh(x) are defined as follows
cosh(x) = 1/2 (ex + e-x), sinh(x) = 1/2(ex - e-x), tanh(x) = sinh(x)/cosh(x)
show that
tanh-1(x) = 1/2 loge (1+x/1-x)
(b) Compute the following derivative
d/dx(cosh-1(tanh(2x)))
(c) Evaluate the following improper integral using a suitable substitution. Be sure to treat the improper integral with due care.
I = -∞∫3Π 4/4+x2dx
2. (a) Use the definitions
cosh(x) = 1/2(ex + e-x), sinh(x) = 1/2(ex - e-x)
to express sinh(x + y) and cosh(x + y) in terms of cosh(x), sinh(x), cosh(y) and sinh(y).
(b) Using the results of part (a) show that
sinh(mx + x) = cosh(mx) sinh(x) + sinh(mx) cosh(x)
cosh(mx + x) = cosh(mx) cosh(x) + sinh(mx) sinh(x)
(c) Use the result of part (b) to express the following sums
Cn = cosh(1x) + cosh(2x) + cosh(3x) + cosh(nx)
Sn = sinh(1x) + sinh(2x) + sinh(3x) + sinh(nx)
in terms of just cosh((n + 1)x), sinh((n + 1)x), cosh(x) and sinh(x) (and possibly some numbers like 1, 2, e etc.).