1. Find dy/dx.
a) y = cosh(2x4-3/x+1)
b) y = ln(sinh-1x)
c) y = cosh(1/x)
2. Evaluate the given integral by using appropriate method in integration.
a) ∫(2x2 - 3/x2 - 3x + 2)dx
b) ∫(2x2 - 10x + 4/(x+2)2(x2+3))dx
c) ∫x3/2 ln(x2)dx
d) ∫cos(ln x)dx
e) ∫x2e-3x dx
f) -1∫2dx/(x-1)3
g) -∞∫0 (exdx/4+3ex)
h) ∫√(tan x)sec4 x dx
i) ∫(3x3/√(4-x2) dx
j) ∫(√(x2-16)/x) dx
k) ∫(dx/√(4x-x2))
3. Approximate the integral using (a) the trapezoidal approximation T4 (b) Sampson's approximation S6
1∫3(1/3x+1) dx
4. Show that k=0Σ∞(x-2)k = 1/(3-x); if 4 < x < 6.
5. Show that the given sequence is strictly increasing or strictly decreasing.
a) {n/3n+4}+∞n=1
b) {ne-2n}+∞n=1
c) {5n/n!}+∞n=1
6. Determine whether the series converges.
a) k=1Σ∞3/5k-1
b) k=2Σ∞πk+2
7. Determine whether the sequence converges; if so find its limit.
{(n+1)(n+3)/3n2}+∞n=1
8. Find the general term of the sequence.
1, -1/4, 1/27, -1/256