Evaluate the given integral by using appropriate method in


1. Find dy/dx.

a) y = cosh(2x4-3/x+1)

b) y = ln(sinh-1x)

c) y = cosh(1/x)

2. Evaluate the given integral by using appropriate method in integration.

a) ∫(2x2 - 3/x2 - 3x + 2)dx

b) ∫(2x2 - 10x + 4/(x+2)2(x2+3))dx

c) ∫x3/2 ln(x2)dx

d) ∫cos(ln x)dx

e) ∫x2e-3x dx

f) -12dx/(x-1)3

­g) -∞0 (exdx/4+3ex)

h) ∫√(tan x)sec4 x dx

i) ∫(3x3/√(4-x2) dx

j) ∫(√(x2-16)/x) dx

k) ∫(dx/√(4x-x2))

3. Approximate the integral using (a) the trapezoidal approximation T4 (b) Sampson's approximation S6

13(1/3x+1) dx

4. Show that k=0Σ(x-2)k = 1/(3-x); if 4 < x < 6.

5. Show that the given sequence is strictly increasing or strictly decreasing.

a) {n/3n+4}+∞n=1

b) {ne-2n}+∞n=1

c) {5n/n!}+∞n=1

6. Determine whether the series converges.

a) k=1Σ3/5k-1

b) k=2Σπk+2

7. Determine whether the sequence converges; if so find its limit.

{(n+1)(n+3)/3n2}+∞n=1

8. Find the general term of the sequence.

1, -1/4, 1/27, -1/256

Solution Preview :

Prepared by a verified Expert
Mathematics: Evaluate the given integral by using appropriate method in
Reference No:- TGS01398200

Now Priced at $45 (50% Discount)

Recommended (98%)

Rated (4.3/5)