1.
Add.
(-9 + 3n6 + 3n5) + (2n6 + 5n5 + 6)
A) 5n6 + 8n5 - 3
B) 10n11
C) 5 + 8n6 - 3n5
D) -7n6 + 8n5 + 9
2.
Subtract.
(8n7 + 2n6 + 17) - (5n6 + 5n7 + 15)
A) 3n7 - 3n6 + 32
B) 3n7 + 7n6 + 32
C) 2n13
D) 3n7 - 3n6 + 2
3.
Multiply.
4(5x)
A) 20
B) 20x
C) 9x
D) 9
4.
Multiply.
-8x2(-10x4 + 9x3)
A) 8x2
B) 8x6 + 8x5
C) 80x6 - 72x5
D) 80x6 + 9x3
5.
Factor.
y2 - 64
A) (y + 64)(y - 64)
B) (y + 8)(y - 8)
C) (y2 + 8)(y2 - 8)
D) (y - 8)(y - 8)
8.
Solve and check the linear equation.
0.40x - 0.20(50 + x) = -0.04(50)
A) {50}
B) {30}
C) {40}
D) {20}
9.
Solve the equation by factoring.
x2 = x + 6
A) {-2, -3}
B) {1, 6}
C) {-2, 3}
D) {2, 3}
12.
Determine whether the equation defines y as a function of x.
x + y = 9
A) y is a function of x
B) y is not a function of x
13.
Evaluate the function at the given value of the independent variable and simplify.
f(x) = x2 - 1; f(x - 2)
A) x2 + 4
B) x2 - 4x + 3
C) x2 - 3
D) x2 - 4x + 4
14.
Find the slope of the line that goes through the given points.
(-1, 4), (5, 4)
A)
B) 0
C) 2
D) Undefined
15.
Find the slope of the line that goes through the given points.
(-3, -7), (9, -7)
A) 0
B) 1
C) -4
D) 4
16.
Determine whether the given quadratic function has a minimum value or maximum value. Then find the coordinates of the minimum or maximum point.
f(x) = -x2 - 2x - 6
A) minimum;
B) minimum;
C) maximum;
D) maximum;
17.
Find the degree of the polynomial function.
g(x) = -7x3 + 9
A) 0
B) -7
C) 3
D) 4
18.
Find the zeros of the polynomial function.
f(x) = x3 + x2 - 42x
A) x = - 7, x = 6
B) x = 0, x = 5, x = 6
C) x = 5, x = 6
D) x = 0, x = - 7, x = 6
19.
Find the zeros of the polynomial function.
f(x) = x3 + 4x2 - 9x - 36
A) x = -3, x = 3
B) x = 4, x = -3, x = 3
C) x = -4, x = 9
D) x = -4, x = -3, x = 3
21.
Simplify.
log6
A) -2
B) 2
C) -6
D) 6
22.
Simplify.
log2 25
A) 10
B) 32
C) 5
D) 2
23.
Simplify.
9log9(7)
A) 1
B) 97
C) 7
D) 9
25.
Write in logarithmic form.
43 = 64
A) 4 = log 3 64
B) 64 = log 4 3
C) 3 = log 64 4
D) 3 = log 4 64