Introduction to Digital Logic Assignment
1. Give the general expression for a positional number in base r of (n+1) Integer digits and m fractional digits. (Recall weights of an (n+1) digit integer are numbered from n to zero.)
2. Convert the following hexadecimal numbers to octal using binary as the intermediary:
a. (17F.2A59)16 :
b. (2B.36EF)16 :
c. (DEAF.ED)16 :
2. Convert the following octal numbers to hexadecimal using binary as the intermediary:
a. (476.225)8 :
b. (5123.357)8 :
c. (5655.6655)8 :
3. Express the following in one's complement format using 8 bits:
a. (?27)8 :
b. ?(1)10 :
c. ?(1011.101)2 :
d. (6 7/8)10 :
e. (?010.1010)2 :
4. Express the following in nine's complement format using 8 digits:
a. (?884.631)10 :
b. ?(3407.28)10 :
c. ?(120.485)10 :
d. (?61.8267)10 :
e. (?5976.08)10 :
5. Express the following in two's complement format using 8 bits:
a. ?(1)10 :
b. (?5.3)16 :
c. (?111.001)2 :
d. (?1011.110)2 :
e. (5A)16 :
6. Express the following in sign-magnitude format using 8 bits or 8 digits as appropriate:
a. (?2701.43)10 :
b. (?FC4B.6)16 :
c. (?11 100.1)2 :
d. (4423.012)5 :
e. (0.654 32)8 :
7. Express the following as 6 digit decimal numbers in binary coded decimal (BCD) format:
a. (380.27)10 :
b. (?92.55)10 :
c. (?867.09)10 :
8. Express the following as 6 digit decimal numbers in excess three (XS-3) format:
a. (?1.3872)10 :
b. (?901.56)10 :
c. (987.12)10 :
9. Convert from the indicated base to decimal. Truncate fractional numbers to 4 digits:
a. (5314.24)6 :
b. (3412.03)5 :
c. (3B7C.14)13 :
10. Convert from decimal to the indicated base. Truncate fractional numbers to 4 digits:
a. (2989.71)10 to base 16:
b. (5423.15)10 to base 6:
c. (238.36)10 to base 11: